
1

The OpenCL C++ Wrapper API

Version: 1.2.6

Document Revision: 02

Khronos OpenCL Working Group

Authors: Benedict R. Gaster and Lee Howes

Contributers: Simon McIntosh-Smith, Tom Deakin and Bruce Merry

2

1. Introduction... 3

2. C++ Platform layer ... 3

2.1 Platforms ... 3

2.2 Devices .. 5

2.3 Contexts... 6

3. C++ Runtime layer ... 10

3.1 Memory Objects .. 10

3.2 Buffers ... 12

3.2.1 Buffer copy ... 14

3.2.2 BufferGL objects .. 16

3.2.3 BufferRenderGL objects ... 17

3.3 Images ... 17

3.3.1 Image1D objects ... 18

3.3.2 Image2D objects ... 22

3.3.3 Image3D objects ... 24

3.3.4 ImageGL objects... 25

3.4 Samplers .. 26

3.5 Programs ... 28

3.6 Kernels .. 36

3.6.1 Kernel functors ... 40

3.6.2 EnqueueArgs... 42

3.7 Events .. 43

3.8 User Events ... 46

3.9 Command Queues ... 47

4. Exceptions ... 77

5. Using the C++ API with the Standard Template Library ... 80

6. Index.. 82

3

1. Introduction

This specification describes the OpenCL C++ wrapper API (Version 1.2). It should be used in conjunction with

the OpenCL Specification, Version 1.2. The C++ wrapper is built on top of the OpenCL C API and is not a

replacement for it. An implementation of the C++ Wrapper API calls the underlying C API, which is assumed

to be a compliant implementation of the OpenCL Specification platform and runtime API at version 1.2 or

below. The C++ API corresponds closely to the underlying C API and introduces no additional execution

overhead. C++ header macros adapt to the underlying C API version against which the header is compiled.

The wrapper interface is defined within a single C++ header file cl.hpp. All its definitions are contained within

namespace cl. There is no additional requirement to include cl.h; to use either the C++ wrapper or the original

C API, simply include cl.hpp.

The API is divided into a number of classes with corresponding OpenCL C types. For example, class

cl::Memory maps to OpenCL type cl_mem. When possible, C++ inheritance provides an extra level of type

correctness and abstraction. For example, class cl::Buffer derives from base class cl::Memory but represents

the 1D memory subclass of all possible OpenCL memory objects.

The following sections describe each class in detail. The index section at the end of this document lists each

class, constructor, and method defined by the C++ wrapper API.

2. C++ Platform layer

2.1 Platforms

Class cl::Platform provides functionality for working with OpenCL platforms.

The following static method lists the available platforms
1
:

static cl_int cl::Platform::get(VECTOR_CLASS<Platform> * platforms)

platforms is a vector of OpenCL platforms found.

cl::Platform::get returns CL_SUCCESS on success. Otherwise, it returns the following error:

 CL_INVALID_VALUE if platforms is NULL.

The method

 cl_int cl::Platform::getInfo(cl_platform_info name,

 STRING_CLASS * param)

1
 Section 5 describes C++ classes VECTOR_CLASS and STRING_CLASS.

4

gets specific information about the OpenCL platform. Table 4.1 of the OpenCL Specification Version 1.2

specifies the information that can be queried. The table below lists cl_platform_info values that differ in return

type between the OpenCL C API and the OpenCL C++ API.

cl_platform_info C++ return Type
CL_PLATFORM_EXTENSIONS STRING_CLASS

CL_PLATFORM_NAME STRING_CLASS

CL_PLATFORM_PROFILE STRING_CLASS

CL_PLATFORM_VENDOR STRING_CLASS

CL_PLATFORM_VERSION STRING_CLASS
Table 1: Differences in cl::Platform::getInfo return type vs. OpenCL Specification table 4.1

name is an enumeration constant that identifies the platform information being queried. It can be one of the

values specified in table 4.1.

param is a pointer to a memory location where the appropriate values for a given

name as specified in table 4.1 is returned. If param is NULL, it is ignored.

cl::Platform::getInfo returns CL_SUCCESS on success. Otherwise, it returns:

 CL_INVALID_VALUE if name is not one of the supported values.

The method

template <cl_int name> typename

detail::param_traits<detail::cl_platform_info, name>::param_type

cl::Platform::getInfo (void)

gets specific information about the OpenCL platform. Table 4.1 of the OpenCL Specification Version 1.2

specifies the information that can be queried. The table above lists cl_platform_info values that differ in return

type between the OpenCL C API and the OpenCL C++ API.

name is an enumeration constant that identifies the platform information being queried. It can be one of the

values specified in table 4.1.

cl::Platform::getInfo returns the appropriate value for a given name as specified in table 4.1.

The method

cl_int cl::Platform::getDevices(cl_device_type type,

 VECTOR_CLASS<Device> * devices)

gets the list of devices available on a platform.

type is a bitfield that identifies OpenCL device type. The type can be used to query specific OpenCL devices or

all available OpenCL devices. Table 4.2 of the OpenCL Specification Version 1.2 specifies the valid values for

type.

devices returns a vector of OpenCL devices found. devices must not be NULL.

5

cl::Platform::getDevices returns CL_SUCCESS if the method is executed successfully. Otherwise, it returns

one of the following errors:

 CL_INVALID_DEVICE_TYPE if type is not a valid value.

 CL_INVALID_ARG_VALUE if devices is NULL.

 CL_DEVICE_NOT_FOUND if no OpenCL devices matching type were found.

2.2 Devices

Class cl::Device provides functionality for working with OpenCL devices.

The constructor

cl::Device::Device(cl_device_id device)

creates an OpenCL device wrapper for a device.

device is an OpenCL device id.

The method

template <typename T>

cl_int cl::Device::getInfo(cl_device_info name,

 T * param)

gets specific information about the OpenCL device. Table 4.3 of the OpenCL Specification Version 1.2

specifies the information that can be queried. The table below lists cl_device_info values that differ in return

type between the OpenCL C API and the OpenCL C++ API.

cl_device_info C++ return Type
CL_DEVICE_BUILT_IN_KERNELS STRING_CLASS

CL_DEVICE_EXTENSIONS STRING_CLASS

CL_DEVICE_MAX_WORK_ITEM_SIZES VECTOR_CLASS<::size_t>

CL_DEVICE_NAME STRING_CLASS

CL_DEVICE_OPENCL_C_VERSION STRING_CLASS

CL_DEVICE_PARTITION_PROPERTIES VECTOR_CLASS<cl_device_partition_property>

CL_DEVICE_PARTITION_TYPE VECTOR_CLASS<cl_device_partition_property>

CL_DEVICE_PROFILE STRING_CLASS

CL_DEVICE_VENDOR STRING_CLASS

CL_DEVICE_VERSION STRING_CLASS

CL_DRIVER_VERSION STRING_CLASS
Table 2: Differences in cl::Context::getInfo return type vs. OpenCL Specification table 4.3

T is a compile time argument that is the return for the specific information being queried. It corresponds to the

values in table 4.3.

name is an enumeration constant that identifies the device information being queried. It can be one of the values

specified in table 4.3.

6

param is a pointer to a memory location where the appropriate values for a given name as specified in table 4.3

is returned. If param is NULL, it is ignored.

cl::Device::getInfo returns CL_SUCCESS on success. Otherwise, it returns:

 CL_INVALID_VALUE if name is not one of the supported values.

The method

template <cl_int name> typename

detail::param_traits<detail::cl_device_info, name>::param_type

cl::Device::getInfo(void)

gets specific information about the OpenCL device. Table 4.3 specifies the information that can be queried.

name is an enumeration constant that identifies the device information being queried. It can be one of the values

specified in table 4.3.

cl::Device::getInfo returns the appropriate value for a given name as specified in table 4.3 in conjunction with

the table above.

The method

 cl_int cl::Device::createSubDevices(const cl_device_partition_property *properties,

 VECTOR_CLASS<Device>* devices)

creates an array of sub-devices that each reference a non-intersecting set of compute units of an OpenCL device.

properties specifies how to partition the device. Each property should be an enumeration constant as specified

in table 4.4 of the OpenCL Specification Version 1.2.

devices is a buffer where the OpenCL sub-devices are returned. devices must not be null.

cl::Device::createSubDevices returns CL_SUCCESS if the method is executed successfully. Otherwise, it

returns an error code as returned by the underlying OpenCL clCreateSubDevices call.

2.3 Contexts
cl

Class cl::Context provides functionality for working with OpenCL contexts.

The constructor

cl::Context::Context(VECTOR_CLASS<Device>& devices,

cl_context_properties * properties = NULL,

void (CL_CALLBACK * pfn_notify)(

const char * errorinfo,

const void * private_info,

::size_t cb,

void * user_data) = NULL,

7

void * user_data = NULL,

cl_int * err = NULL)

creates an OpenCL context.

devices is a pointer to a vector of unique devices returned by cl::Platform::getDevices. If more than one device

is specified, a selection criteria may be applied to determine if the list of devices specified can be used together

to create a context.

properties specifies a list of context property names and their corresponding values. Each property name is

immediately followed by the corresponding desired value. The list is terminated with 0. The list of supported

properties is described in table 4.5 of the OpenCL Specification. properties can be NULL, in which case the

platform that is selected is implementation-defined.

pfn_notify is a callback function registered by the application. This callback function is used by the OpenCL

implementation to report information on errors that occur in this context. This callback function may be called

asynchronously by the OpenCL implementation. It is the application’s responsibility to ensure that the callback

function is thread-safe. The parameters to the callback function are:

 errinfo is a pointer to an error string.

 private_info and cb represent a pointer to binary data returned by the OpenCL implementation that can
be used to log additional information helpful in debugging the error.

 user_data is a pointer to user supplied data.

If pfn_notify is NULL, no callback function is registered.

user_data is passed as the user_data argument when pfn_notify is called. user_data can be NULL.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::Context::Context returns a valid object of type cl::Context and sets err to CL_SUCCESS if it creates the

context successfully. Otherwise, it returns one of the following error values in err:

 CL_INVALID_PROPERTY if context property name in properties is not a supported property name, if
the value specified for a supported property name is not valid, or if the same property name is specified

more than once.

 CL_INVALID_VALUE if devices is of length zero.

 CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

 CL_INVALID_DEVICE if devices contains an invalid device.

 CL_DEVICE_NOT_AVAILABLE if a device in devices is currently not available even though the
device was returned by cl::Platform::getDevices.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

The constructor

cl::Context::Context(cl_device_type type,
cl_context_properties * properties = NULL,

void (CL_CALLBACK * pfn_notify)(

const char * errorinfo,

const void * private_info,

8

::size_t cb,

void * user_data) = NULL,

void * user_data = NULL,

cl_int * err = NULL)

creates an OpenCL context from a device type that identifies the specific devices to use. The constructor

attempts to use the first platform that has a device of the specified type.

type is a bit-field that identifies the type of device, as described in table 4.2 in section 4.2 of the OpenCL

Specification Version 1.2.

properties specifies a list of context property names and their corresponding values. Each property name is

immediately followed by the corresponding desired value. The list is terminated with 0. The list of supported

properties is described in table 4.4. properties can be NULL, in which case the platform that is selected is

implementation-defined.

pfn_notify is a callback function registered by the application. This callback function is used by the OpenCL

implementation to report information on errors that occur in this context. This callback function may be called

asynchronously by the OpenCL implementation. It is the application’s responsibility to ensure that the callback

function is thread-safe. The parameters to the callback function are:

 errinfo is a pointer to an error string.

 private_info and cb represent a pointer to binary data that is returned by the OpenCL implementation
that can be used to log additional information helpful in debugging the error.

 user_data is a pointer to user supplied data.

If pfn_notify is NULL, no callback function is registered.

user_data is passed as the user_data argument when pfn_notify is called. user_data can be NULL.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::Context::Context returns a valid object of type cl::Context and sets err to CL_SUCCESS if it creates the

context successfully. Otherwise, it returns one of the following error values in err:

 CL_INVALID_PROPERTY if context property name in properties is not a supported property name, if
the value specified for a supported property name is not valid, or if the same property name is specified

more than once.

 CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

 CL_INVALID_DEVICE_TYPE if type is not a valid value.

 CL_DEVICE_NOT_AVAILABLE if no devices that match type and property values specified in
properties are currently available.

 CL_DEVICE_NOT_FOUND if no devices that match type and property values specified in properties
were found.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

The method

 template <typename T>

 cl_int cl::Context::getInfo(cl_context_info name,

9

 T * param)

gets specific information about the OpenCL context. Table 4.6 of the OpenCl Specification Version 1.2

specifies the information that can be queried. The table below lists cl_context_info values that differ in return

type between the OpenCL C API and the OpenCL C++ API.

cl_context_info C++ return Type

CL_CONTEXT_DEVICES VECTOR_CLASS<cl::Device>

CL_CONTEXT_PROPERTIES VECTOR_CLASS<cl_context_properties>
Table 3: Differences in cl::Context::getInfo return type vs. OpenCL Specification table 4.6

T is a compile time argument that is the return type for the specific information being queried. It corresponds to

the values in tables 4.6.

name is an enumeration constant that identifies the context information being queried. It can be one of the

values specified in table 4.6.

param is a pointer to a memory location where the appropriate values for a given name as specified in table 4.5

is returned. If param is NULL, it is ignored.

cl::Context::getInfo returns CL_SUCCESS on success. Otherwise, it returns:

 CL_INVALID_VALUE if name is not one of the supported values.

The method

template <cl_int name> typename

detail::param_traits<detail::cl_context_info, name>::param_type

cl::Context::getInfo(void)

gets specific information about the OpenCL context. Table 4.6 of the OpenCL Specification Version 1.2

specifies the information that can be queried. The table above lists cl_context_info values that differ in return

type between the OpenCL C API and the OpenCL C++ API.

name is an enumeration constant that identifies the context information being queried. It can be one of the

values specified in table 4.6.

cl::Context::getInfo returns the appropriate value for a given name as specified in table 4.6.

The method

cl_int cl::Context::getSupportedImageFormats(

cl_mem_flags flags,

cl_mem_object_type image_type,

VECTOR_CLASS<ImageFormat> * formats)

can be used to get the list of image formats supported by an OpenCL implementation for the context, when the

following information about an image memory object is specified:

 Context

 Image type - 2D, or 3D image.

10

 Image object allocation information

flags is a bit-field that specifies allocation and usage information about the image memory object being created,

as described in table 5.3 of the OpenCL Specification Version 1.2.

image_type describes the image type. It must be either CL_MEM_OBJECT_IMAGE2D or

CL_MEM_OBJECT_IMAGE3D.

formats is a pointer to a memory location where the vector of supported image formats is returned. Each entry

describes a instance of the class cl::ImageFormat, which is a mapping for cl_image_format structure

supported by the OpenCL implementation. If formats is NULL, it is ignored.

cl::Context::getSupportedImageFormats returns CL_SUCCESS on success. Otherwise, it returns one of the

following errors:

 CL_INVALID_VALUE if flags or image_type are not valid.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

3. C++ Runtime layer

3.1 Memory Objects

Class cl::Memory provides a base class for working with OpenCL memory objects. It is used to build buffers

and images in the following sections.

The method

template <typename T>

cl_int cl::Memory::getInfo(cl_context_info name,

 T * param)

gets specific information about the OpenCL memory object. Table 5.11 of the OpenCL Specification Version

1.2 specifies the information that can be queried. The table below lists cl_memory_info values that differ in

return type between the OpenCL C API and the OpenCL C++ API.

cl_memory_info C++ return Type

CL_MEM_CONTEXT cl::Context
Table 4: Differences in cl::Memory::getInfo return type vs. OpenCL Specification table 5.11

T is a compile time argument that is the return type for the specific information being queried. It corresponds to

the values in tables 5.11.

name is an enumeration constant that identifies the context information being queried. It can be one of the

values specified in table 5.11.

11

param is a pointer to a memory location where the appropriate values for a given name as specified in table

5.11 is returned. If param is NULL, it is ignored.

cl::Memory::getInfo returns CL_SUCCESS on success. Otherwise, it returns:

 CL_INVALID_VALUE if name is not one of the supported values.

The method

template <cl_int name> typename

detail::param_traits<detail::cl_context_info, name>::param_type

cl::Memory::getInfo(void)

gets specific information about the OpenCL memory object. Table 5.11 of the OpenCL Specification Version

1.2 specifies the information that can be queried. The table above lists cl_memory_info values that differ in

return type between the OpenCL C API and the OpenCL C++ API.

name is an enumeration constant that identifies the memory object information being queried. It can be one of

the values specified in table 5.11.

cl::Memory::getInfo returns the appropriate value for a given name as specified in table 5.11.

The method

cl_int cl::Memory::setDestructorCallback(

void (CL_CALLBACK * pfn_notify)(cl_mem memobj,

 void * user_data),

void * user_data = NULL)

registers a user callback function that is called when the memory object is deleted and its resources freed. The

description of clSetMemObjectDestructorCallback in section 5.4 of the OpenCL Specification gives a

detailed overview.

pfn_notify is a callback function registered by the application. This callback function may be called

asynchronously by the OpenCL implementation. It is the application’s responsibility to ensure that the callback

function is thread-safe. The parameters to the callback function are:

 memobj is the memory object being deleted.

 user_data is a pointer to user supplied data.

user_data is passed as the user_data argument when pfn_notify is called.

cl::Memory::setDestructorCallback returns CL_SUCCESS if executed successfully. Otherwise, it returns one

of the following errors:

 CL_INVALID_VALUE if pfn_notify is NULL.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

12

3.2 Buffers

Class cl::Buffer : public Memory provides functionality for working with OpenCL buffers.

The constructor

cl::Buffer::Buffer(

const Context& context,

cl_mem_flags flags,

::size_t size,

void * host_ptr = NULL,

cl_int * err = NULL)

creates an OpenCL buffer object.

context is a valid OpenCL context used to create the buffer object.

flags is a bit-field that specifies allocation and usage information, such as the memory arena that used to

allocate the buffer object and how it is used. Table 5.3 of the OpenCL Specification Version 1.2 describes the

valid values for flags.

size is the size in bytes of the buffer memory object to be allocated.

host_ptr is a pointer to buffer data that may already be allocated by the application. The size of the buffer that

host_ptr points to must be at least size bytes.

err returns an appropriate error code. If err is NULL, no error code is returned.

The constructor

cl::Buffer::Buffer(

cl_mem_flags flags,

::size_t size,

void * host_ptr = NULL,

cl_int * err = NULL)

creates an OpenCL buffer object in the default context. The default context is constructed via

clCreateContextFromType with a type of CL_DEVICE_TYPE_DEFAULT.

flags is a bit-field that specifies allocation and usage information, such as the memory arena that used to

allocate the buffer object and how it is used. Table 5.3 of the OpenCL Specification Version 1.2 describes the

valid values for flags.

size is the size in bytes of the buffer memory object to be allocated.

host_ptr is a pointer to buffer data that may already be allocated by the application. The size of the buffer that

host_ptr points to must be at least size bytes.

13

err returns an appropriate error code. If err is NULL, no error code is returned.

The constructor

 template <typename IteratorType>

 cl::Buffer::Buffer(

 IteratorType startIterator,

 IteratorType endIterator,

 bool readonly ,

bool useHostPtr = true,

cl_int * err = NULL)

creates an initialized OpenCL buffer object.

The given IteratorType must be a random access iterator. If useHostPtr is true, it must use contiguous storage.

startIterator and endIterator of the given IteratorType provide start and end iterators for the data source.

readonly specifies whether the buffer object is readonly (cl_mem_flags value CL_MEM_READONLY or

CL_MEM_READWRITE).

useHostPtr specifies whether the buffer uses a host pointer (cl_mem_flags value

CL_MEM_USE_HOST_PTR).

The constructor

 template <typename IteratorType>

 cl::Buffer::Buffer(

 const Context &context,

 IteratorType startIterator,

 IteratorType endIterator,

 bool readonly ,

bool useHostPtr = true,

cl_int * err = NULL)

creates an initialized OpenCL buffer object.

The given IteratorType must be a random access iterator. If useHostPtr is true, it must use contiguous storage.

context gives the Context.

startIterator and endIterator of the given IteratorType provide start and end iterators for the data source.

readonly specifies whether the buffer object is readonly (cl_mem_flags value CL_MEM_READONLY or

CL_MEM_READWRITE).

useHostPtr specifies whether the buffer uses a host pointer (cl_mem_flags value

CL_MEM_USE_HOST_PTR).

14

If useHostPtr is false, the constructor creates a CommandQueue and enqueues a copy of the host memory to the

first device in the context. This constructor waits for the copy to complete and then releases the

CommandQueue. Note that this constructor is a blocking call in this case.

cl::Buffer::Buffer creates a valid non-zero buffer object and sets err to CL_SUCCESS if it creates the buffer

object successfully. Otherwise, it returns one of the following error values returned in err:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not valid.

 CL_INVALID_BUFFER_SIZE if size is 0.

 CL_INVALID_HOST_PTR if host_ptr is NULL and CL_MEM_USE_HOST_PTR or
CL_MEM_COPY_HOST_PTR are set in flags or if host_ptr is not NULL but

CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in flags.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for buffer
object.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The method

cl::Buffer cl::Buffer::createSubBuffer(cl_mem_flags flags,

 cl_buffer_create_type buffer_create_type,

 const void * buffer_create_info,

 cl_int * err = NULL)

creates a new buffer object from an existing buffer object.

flags is a bit-field that specifies allocation and usage information about the image memory object being created,

as described in table 5.3 of the OpenCL Specification Version 1.2.

buffer_create_type and buffer_create_info describe the type of buffer object to be created. The list of supported

values for buffer_create_type and corresponding descriptor for buffer_create_info are described in table 5.4 of

the OpenCL Specification Version 1.2.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::Buffer::createSubBuffer returns CL_SUCCESS in err on success. It returns an error code in err from the

underlying OpenCL clCreateSubBuffer call if it fails. Otherwise, it returns one of the following errors in err:

 CL_INVALID_VALUE if values specified in flags are not valid.

 CL_INVALID_VALUE if value specified in buffer_create_type is not valid.

 CL_INVALID_VALUE if value specified in buffer_create_info (for a given buffer_create_type) is not
valid or if buffer_create_info is NULL.

3.2.1 Buffer copy

15

The method

template <typename IteratorType>

cl_int copy(IteratorType startIterator,

 IteratorType endIterator,

 cl::Buffer &buffer)

performs a blocking copy to a buffer. The given IteratorType must be a random access iterator.

startIterator and endIterator of the given IteratorType provide start and end iterators for the data source.

buffer gives the destination buffer.

The method

template <typename IteratorType>

cl_int copy(const cl::Buffer &buffer,

 IteratorType startIterator,

 IteratorType endIterator)

performs a blocking copy from a buffer.

buffer gives the source buffer.

startIterator and endIterator of the given IteratorType provide start and end iterators for the data destination.

The method

template <typename IteratorType>

cl_int copy(const cl::CommandQueue &queue,

 IteratorType startIterator,

 IteratorType endIterator,

 cl::Buffer &buffer)

performs a blocking copy to a buffer. The given IteratorType must be a random access iterator.

queue gives the Command Queue to enqueue the copy to.

startIterator and endIterator of the given IteratorType provide start and end iterators for the data source.

buffer gives the destination buffer.

The method

template <typename IteratorType>

cl_int copy(const cl::CommandQueue &queue,

 const cl::Buffer &buffer,

 IteratorType startIterator,

 IteratorType endIterator)

16

performs a blocking copy from a buffer.

queue gives the Command Queue to enqueue the copy to.

buffer gives the source buffer.

startIterator and endIterator of the given IteratorType provide start and end iterators for the data destination.

3.2.2 BufferGL objects

Class cl::BufferGL : public Buffer provides functionality for OpenGL buffer interoperability.

The constructor

cl::BufferGL::BufferGL(

const Context& context,

cl_mem_flags flags,

GLuint bufobj,

cl_int * err = NULL)

creates an OpenGL-compatible buffer object.

context is a valid OpenCL context used to create the buffer object.

flags is a bit-field. Table 5.3 of the OpenCL Specification Version 1.2 describes the valid values for flags.

bufobj is an OpenGL buffer handle.

err returns an appropriate error code. If err is NULL, no error code is returned.

The method

cl_int cl::BufferGL::getObjectInfo(cl_gl_object_type *type,

GLuint *gl_object_name)

gets specific information about an OpenGL buffer object.

type returns the type of the GL buffer object, as defined in OpenCL Specification Version 1.1, section 9.8.5. If

type is NULL, it is ignored.

gl_object_name returns the GL object name used to create the OpenGL renderbuffer object. If gl_object_name

is NULL, it is ignored.

cl::BufferGL::getObjectInfo returns CL_SUCCESS on success.

17

3.2.3 BufferRenderGL objects

Class cl::BufferRenderGL : public Buffer provides functionality for OpenGL renderbuffer interoperability.

The constructor

cl::BufferRenderGL::BufferRenderGL(

const Context& context,

cl_mem_flags flags,

GLuint bufobj,

cl_int * err = NULL)

creates an OpenGL-compatible renderbuffer object.

context is a valid OpenCL context used to create the buffer object.

flags is a bit-field. Table 5.3 describes the valid values for flags.

bufobj is an OpenGL renderbuffer handle.

err returns an appropriate error code. If err is NULL, no error code is returned.

The method

cl_int cl::BufferRenderGL::getObjectInfo(cl_gl_object_type *type,

GLuint *gl_object_name)

gets specific information about an OpenGL renderbuffer object.

type returns the type of the GL renderbuffer object, as defined in OpenCL Specification Version 1.1, section

9.8.5.

gl_object_name returns the GL object name used to create the OpenGL renderbuffer object. If gl_object_name

is NULL, it is ignored.

cl::BufferRenderGL::getObjectInfo returns CL_SUCCESS on success.

3.3 Images

Class cl::Image: public Memory provides a base class for working with OpenCL image objects. It is used to

build 1D, 2D, 3D, and array images in the following sections.

The method

template <typename T>

cl_int cl::Image::getImageInfo(cl_image_info name,

 T * param)

18

gets specific information about the OpenCL image object. Table 5.9 of the OpenCL Specification Version 1.2

specifies the information that can be queried.

T is a compile time argument that is the return for the specific information being queried. It corresponds to the

values in table 5.9.

name is an enumeration constant that identifies the context information being queried. It can be one of the

values specified in table 5.9.

param is a pointer to a memory location where the appropriate values for a given name as specified in table 5.9

is returned. If param is NULL, it is ignored.

cl::Memory::getImageInfo returns CL_SUCCESS on success. Otherwise, it returns:

 CL_INVALID_VALUE if name is not one of the supported values.

The method

template <cl_int name> typename

detail::param_traits<detail::cl_image_info, name>::param_type

cl::Image::getImageInfo(void)

gets specific information about the OpenCL image object. Table 5.9 of the OpenCL Specification Version 1.2

specifies the information that can be queried.

name is an enumeration constant that identifies the memory object information being queried. It can be one of

the values specified in table 5.9.

cl::Image::getImageInfo returns the appropriate value for a given name as specified in table 5.9.

3.3.1 Image1D objects

Class cl::Image1D : public Image provides functionality for working with OpenCL 1D images.

The constructor

cl::Image1D::Image1D(Context& context,

 cl_mem_flags flags,

 ImageFormat format,

 ::size_t width,

 void * host_ptr = NULL,

 cl_int * err = NULL)

creates an OpenCL 1D image object.

context is a valid OpenCL context on which the image object is to be created.

19

flags is a bit-field that specifies allocation and usage information about the image object being created. It is

described in table 5.3 of the OpenCL Specification Version 1.2.

format is a class that describes format properties of the image to be allocated. cl::ImageFormat is a mapping

for OpenCL image format descriptor structure cl_image_format, defined in Section 5.3.1.1 of the OpenCL

Specification Version 1.2:

 typedef struct _cl_image_format {

 cl_channel_order image_channel_order;

 cl_channel_type image_channel_data_type;

 } cl_image_format;

width gives the width of the image in pixels. It must be greater than or equal to 1.

host_ptr is a pointer to the image data that may already be allocated by the application. The size of the buffer

that host_ptr points to must be >= row_pitch * height. The size of each element in bytes must be a power of 2.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::Image1D::Image1D returns a valid non-zero image object and sets err to CL_SUCCESS if it creates the

image object successfully. Otherwise, it returns one of the following error values in err:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not valid.

 CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if values specified in format are not valid.

 CL_INVALID_IMAGE_SIZE if width is 0 or exceeds the value specified in
CL_DEVICE_IMAGE2D_MAX_WIDTH for all devices in context or if values specified by row_pitch

do not follow rules described in the argument description above.

 CL_INVALID_HOST_PTR if host_ptr is NULL and CL_MEM_USE_HOST_PTR or

CL_MEM_COPY_HOST_PTR are set in flags or if host_ptr is not NULL but

CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in flags.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if the image_format is not supported.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for image
object.

 CL_INVALID_OPERATION if there are no devices in context that support images (i.e.,
CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

Class cl::Image1DArray : public Image provides functionality for working with arrays of OpenCL 1D

images.

The constructor

cl::Image1DArray::Image1DArray(Context& context,

 cl_mem_flags flags,

20

 ImageFormat format,

 ::size_t array_size,

 ::size_t width,

 ::size_t row_pitch = 0,

 void * host_ptr = NULL,

 cl_int * err = NULL)

creates an OpenCL 1D image array object.

context is a valid OpenCL context on which the object is to be created.

flags is a bit-field that specifies allocation and usage information about the image memory object being created,

as described in table 5.3.

format is a class that describes format properties of the image to be allocated. cl::ImageFormat is a mapping

for the OpenCL structure cl_image_format. Section 5.3.1.1 gives a detailed description of the image format

descriptor.

array_size is the number of images in the image array.

width is the width of each image in pixels. This value must be greater than or equal to 1.

row_pitch is the scan-line pitch in bytes. This must be 0 if host_ptr is NULL and can be either 0 or >= width *

size of element in bytes if host_ptr is not NULL. If host_ptr is not NULL and row_pitch = 0, row_pitch is

calculated as width * size of element in bytes. If row_pitch is not 0, it must be a multiple of the image element

size in bytes.

host_ptr is a pointer to the image data that may already be allocated by the application. The size

of the buffer that host_ptr points to must be >= row_pitch * array_size. The size of each element in bytes must

be a power of 2. The image data specified by host_ptr is stored as a linear sequence of adjacent scanlines. Each

scanline is stored as a linear sequence of image elements.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::Image1DArray::Image1DArray returns a valid non-zero object and sets err to CL_SUCCESS if it creates

the image array object successfully.

Class cl::Image1DBuffer : public Image provides functionality for working with OpenCL 1D image buffers.

The constructor

cl::Image1DBuffer::Image1DBuffer(Context& context,

 cl_mem_flags flags,

 ImageFormat format,

 ::size_t width,

 const Buffer &buffer,

 cl_int * err = NULL)

creates an OpenCL 1D image buffer object.

21

context is a valid OpenCL context on which the object is to be created.

flags is a bit-field that specifies allocation and usage information about the image memory object being created,

as described in table 5.3. See the list of error codes for restrictions on how flags may be set.

format is a class that describes format properties of the image to be allocated. cl::ImageFormat is a mapping

for the OpenCL structure cl_image_format. Section 5.3.1.1 gives a detailed description of the image format

descriptor.

width is the width of the image in pixels. This value must be greater than or equal to 1.

buffer refers to a valid buffer memory object.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::Image1DArray::Image1DArray returns a valid non-zero object and sets err to CL_SUCCESS if it creates

the image array object successfully. Otherwise, it returns one of the following error codes:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not valid.

 CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if values specified in image_format are not valid or
if image_format is NULL.

 CL_INVALID_IMAGE_DESCRIPTOR if values specified in image_desc are not valid or if
image_desc is NULL.

 CL_INVALID_IMAGE_SIZE if image dimensions specified in image_desc exceed the minimum
maximum image dimensions described in the table of allowed values for param_name for

clGetDeviceInfo for all devices in context.

 CL_INVALID_HOST_PTR if host_ptr in image_desc is NULL and CL_MEM_USE_HOST_PTR or

CL_MEM_COPY_HOST_PTR are set in flags or if host_ptr is not NULL but

CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in flags.

 CL_INVALID_VALUE if a 1D image buffer is being created and the buffer object was created with
CL_MEM_WRITE_ONLY and flags specifies CL_MEM_READ_WRITE or

CL_MEM_READ_ONLY, or if the buffer object was created with CL_MEM_READ_ONLY and flags

specifies CL_MEM_READ_WRITE or CL_MEM_WRITE_ONLY, or if flags specifies

CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR or CL_MEM_COPY_HOST_PTR.

 CL_INVALID_VALUE if a 1D image buffer is being created and the buffer object was created with
CL_MEM_HOST_WRITE_ONLY and flags specifies CL_MEM_HOST_READ_ONLY, or if the

buffer object was created with CL_MEM_HOST_READ_ONLY and flags specifies

CL_MEM_HOST_WRITE_ONLY, or if the buffer object was created with

CL_MEM_HOST_NO_ACCESS and flags specifies CL_MEM_HOST_READ_ONLY or

CL_MEM_HOST_WRITE_ONLY.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if the image_format is not supported.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for image
object.

 CL_INVALID_OPERATION if there are no devices in context that support images (i.e.
CL_DEVICE_IMAGE_SUPPORT (specified in the table of OpenCL Device Queries for

clGetDeviceInfo) is CL_FALSE).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

22

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

3.3.2 Image2D objects

Class cl::Image2D : public Image provides functionality for working with OpenCL 2D images.

The constructor

cl::Image2D::Image2D(Context& context,

 cl_mem_flags flags,

 ImageFormat format,

 ::size_t width,

 ::size_t height,

 ::size_t row_pitch = 0,

 void * host_ptr = NULL,

 cl_int * err = NULL)

creates an OpenCL 2D image object.

context is a valid OpenCL context on which the image object is to be created.

flags is a bit-field that specifies allocation and usage information about the image memory object being created,

as described in table 5.3 of the OpenCL Specification Version 1.2.

format is a class that describes format properties of the image to be allocated. cl::ImageFormat is a mapping

for the OpenCL structure cl_image_format. Section 5.3.1.1 gives for a detailed description of the image

format descriptor.

width, and height are the width and height of the image in pixels. Each must be greater than or equal to 1.

row_pitch is the scan-line pitch in bytes. This must be 0 if host_ptr is NULL and can be either 0 or >= width *

size of element in bytes if host_ptr is not NULL. If host_ptr is not NULL and row_pitch = 0, row_pitch is

calculated as width * size of element in bytes. If row_pitch is not 0, it must be a multiple of the image element

size in bytes.

host_ptr is a pointer to the image data that may already be allocated by the application. The size

of the buffer that host_ptr points to must be >= row_pitch * height. The size of each element in bytes must be a

power of 2. The image data specified by host_ptr is stored as a linear sequence of adjacent scanlines. Each

scanline is stored as a linear sequence of image elements.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::Image2D::Image2D returns a valid non-zero image object and sets err to CL_SUCCESS if it creates the

image object successfully. Otherwise, it returns one of the following error values in err:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not valid.

23

 CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if values specified in format are not valid.

 CL_INVALID_IMAGE_SIZE if width or height are 0 or if they exceed values specified in

CL_DEVICE_IMAGE2D_MAX_WIDTH or CL_DEVICE_IMAGE2D_MAX_HEIGHT respectively

for all devices in context or if values specified by row_pitch do not follow rules described in the

argument description above.

 CL_INVALID_HOST_PTR if host_ptr is NULL and CL_MEM_USE_HOST_PTR or
CL_MEM_COPY_HOST_PTR are set in flags or if host_ptr is not NULL but

CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in flags.

 CL_IMAGE_FORMAT_NOT_SUPPORTED if the image_format is not supported.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for image
object.

 CL_INVALID_OPERATION if there are no devices in context that support images (i.e.,

CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

Class cl::Image2DArray : public Image provides functionality for working with arrays of OpenCL 2D

images.

The constructor

cl::Image2DArray::Image2DArray(Context& context,

 cl_mem_flags flags,

 ImageFormat format,

 ::size_t array_size,

 ::size_t width,

 ::size_t height,

 ::size_t row_pitch = 0,

 ::size_t slice_pitch = 0,

 void * host_ptr = NULL,

 cl_int * err = NULL)

creates an OpenCL 2D image array object.

context is a valid OpenCL context on which the object is to be created.

flags is a bit-field that specifies allocation and usage information about the image memory object being created,

as described in table 5.3.

format is a class that describes format properties of the image to be allocated. cl::ImageFormat is a mapping

for the OpenCL structure cl_image_format. Section 5.3.1.1 gives a detailed description of the image format

descriptor.

array_size is the number of images in the image array.

24

width and height are the width and height of each image in pixels. These must be values greater than or equal to

1.

row_pitch is the scan-line pitch in bytes. This must be 0 if host_ptr is NULL and can be either 0 or >= width *

size of element in bytes if host_ptr is not NULL. If host_ptr is not NULL and row_pitch = 0, row_pitch is

calculated as width * size of element in bytes. If row_pitch is not 0, it must be a multiple of the image element

size in bytes.

slice_pitch gives the size in bytes of each image in the image array. It must be 0 if host_ptr is NULL. If

host_ptr is not NULL, slice_pitch can be either 0 or equal to row_pitch.

host_ptr is a pointer to the image data that may already be allocated by the application. The size

of the buffer that host_ptr points to must be >= slice_pitch * array_size. The size of each element in bytes must

be a power of 2. The image data specified by host_ptr is stored as a linear sequence of adjacent scanlines. Each

scanline is stored as a linear sequence of image elements.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::Image2DArray::Image2DArray returns a valid non-zero object and sets err to CL_SUCCESS if it creates

the image array object successfully.

3.3.3 Image3D objects

Class cl::Image3D : public Image provides functionality for working with OpenCL 3D images.

The constructor

cl::Image3D::Image3D(const Context& context,

 cl_mem_flags flags,

 ImageFormat format,

 ::size_t width,

 ::size_t height,

 ::size_t depth,

 ::size_t row_pitch = 0,

 ::size_t slice_pitch = 0,

 void * host_ptr = NULL,

 cl_int * err = NULL)

creates an OpenCL 3D image object.

context is a valid OpenCL context on which the image object is to be created.

flags is a bit-field that specifies allocation and usage information about the image memory object being created,

as described in table 5.3.

format is a class that describes format properties of the image to be allocated. cl::ImageFormat is a mapping

for the OpenCL structure cl_image_format. Section 5.3.1.1 gives a detailed description of the image format

descriptor.

25

width, and height are the width and height of the image in pixels. Each must be greater than or equal to 1.

depth is the depth of the image in pixels. This must be a value > 1.

row_pitch is the scan-line pitch in bytes. This must be 0 if host_ptr is NULL and can be either 0 or >= width *

size of element in bytes if host_ptr is not NULL. If host_ptr is not NULL and row_pitch = 0, row_pitch is

calculated as width * size of element in bytes. If row_pitch is not 0, it must be a multiple of the image element

size in bytes.

slice_pitch is the size in bytes of each 2D slice in the 3D image. This must be 0 if host_ptr is NULL and can be

either 0 or >= row_pitch * height if host_ptr is not NULL. If host_ptr is not NULL and slice_pitch = 0,

slice_pitch is calculated as row_pitch * height. If slice_pitch is not 0, it must be a multiple of the row_pitch.

host_ptr is a pointer to the image data that may already be allocated by the application. The size of the buffer

that host_ptr points to must be >= slice_pitch * depth. The size of each element in bytes must be a power of 2.

The image data specified by host_ptr is stored as a linear sequence of adjacent 2D slices. Each 2D slice is a

linear sequence of adjacent scanlines. Each scanline is a linear sequence of image elements.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::Image3D::Image3D returns a valid non-zero image object and sets err to CL_SUCCESS if it creates the

image object successfully. Otherwise, it returns one of the following error values in err:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if values specified in flags are not valid.

 CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if values specified in format are not valid.

 CL_INVALID_IMAGE_SIZE if width, height are 0 or if depth <= 1 or if they exceed values specified
in CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_HEIGHT or

CL_DEVICE_IMAGE3D_MAX_DEPTH respectively for all devices in context or if values specified

by row_pitch and slice_pitch do not follow rules described in the argument description above.

 CL_INVALID_HOST_PTR if host_ptr is NULL and CL_MEM_USE_HOST_PTR or
CL_MEM_COPY_HOST_PTR are set in flags or if host_ptr is not NULL but

CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in flags.

CL_IMAGE_FORMAT_NOT_SUPPORTED if the image_format is not supported.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for image

object.

 CL_INVALID_OPERATION if there are no devices in context that support images (i.e.
CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

3.3.4 ImageGL objects

Class cl::ImageGL : public Image provides functionality for OpenGL image interoperability. This class
abstracts all OpenGL image objects (texture buffer objects, 1D texture objects, 1D texture array objects, 2D

texture objects, 2D texture array objects, and 3D texture objects).

26

The constructor

cl::ImageGL::ImageGL(Context& context,

 cl_mem_flags flags,

 GLenum target,

 GLint miplevel,

 GLuint texobj,

 cl_int * err = NULL)

creates an OpenGL image object.

context is a valid OpenCL context on which the image object is to be created.

flags is a bit-field that specifies allocation and usage information about the image object being created and is

described in table 5.3 of the OpenCL Specification Version 1.2.

target is an OpenGL texture type, as defined in section 9.8.3 of the OpenCL Specification Version 1.1.

miplevel is the mipmap level to be used.

texobj is the name of an OpenGL texture object.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::ImageGL::ImageGL returns a valid non-zero image object and sets err to CL_SUCCESS if it creates the

image object successfully.

3.4 Samplers

Class cl::Sampler provides functionality for working with OpenCL samplers.

The constructor

cl::Sampler::Sampler(const Context& context,

 cl_bool normalized_coords,

 cl_addressing_mode addressing_mode,

 cl_filter_mode filter_mode,

 cl_int * err = NULL)

creates an OpenCL sampler object. Refer to section 6.11.13.1 for a detailed description of how samplers work.

context must be a valid OpenCL context.

normalized_coords determines if the image coordinates specified are normalized (if normalized_coords is

CL_TRUE) or not (if normalized_coords is CL_FALSE).

27

addressing_mode specifies how out-of-range image coordinates are handled when reading from an image. It

can be CL_ADDRESS_MIRRORED_REPEAT, CL_ADDRESS_REPEAT,

CL_ADDRESS_CLAMP_TO_EDGE, CL_ADDRESS_CLAMP, or CL_ADDRESS_NONE.

filtering_mode specifies the type of filter that must be applied when reading an image. It can be

CL_FILTER_NEAREST, or CL_FILTER_LINEAR.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::Sampler::Sampler constructs a valid non-zero sampler object and sets err to CL_SUCCESS if it creates the

sampler object successfully. Otherwise, it returns one of the following error values in err:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if an argument value for addressing_mode, filter_mode, or normalized_coords

is not valid.

 CL_INVALID_OPERATION if images are not supported by any device associated with context (i.e.,
CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The method

template <typename T>

cl_int cl::Sampler::getInfo(cl_sampler_info name,

 T * param)

gets specific information about the OpenCL Sampler. Table 5.12 of the OpenCL Specification Version 1.2

specifies the information that can be queried. The table below lists cl_sampler_info values that differ in return

type between the OpenCL C API and the OpenCL C++ API.

cl_sampler_info C++ return Type

CL_SAMPLER_CONTEXT cl::Context
Table 5: Differences in cl::Sampler::getInfo return type vs. OpenCL Specification table 5.12

T is a compile time argument that is the return for the specific information being queried. It corresponds to the

values in tables 5.12.

name is an enumeration constant that identifies the sampler information being queried. It can be one of the

values specified in table 5.12.

param is a pointer to a memory location where the appropriate values for a given name as specified in table

5.12 is returned.

If param is NULL, it is ignored.

cl::Sampler::getInfo returns CL_SUCCESS on success. Otherwise, it returns:

 CL_INVALID_VALUE if name is not one of the supported values.

The method

28

template <cl_int name> typename

detail::param_traits<detail::cl_sampler_info, name>::param_type

cl::Sampler::getInfo(void)

gets specific information about the OpenCL sampler. Table 5.12 of the OpenCL Specification Version 1.2

specifies the information that can be queried. The table above lists cl_sampler_info values that differ in return

type between the OpenCL C API and the OpenCL C++ API.

name is an enumeration constant that identifies the sampler information being queried. It can be one of the

values specified in table 5.12.

cl::Sampler::getInfo returns the appropriate value for a given name as specified in table 5.12.

3.5 Programs

Class cl::Program provides functionality for working with OpenCL programs.

Class cl::Program provides two public typedefs for working with source files and binaries, respectively

typedef VECTOR_CLASS<std::pair<const void*, ::size_t> > Binaries

and

 typedef VECTOR_CLASS<std::pair<const char*, ::size_t> > Sources

The constructor

cl::Program::Program(const STRING_CLASS& source,

 bool build = false,

 cl_int * err = NULL)

creates an OpenCL program object.

source is the program source code.

build is a flag that indicates whether to build the program.

err returns an appropriate error code. If err is NULL, no error code is returned.

The constructor

cl::Program::Program(const Context& context,

 const STRING_CLASS& source,

 bool build,

 cl_int * err = NULL)

29

creates an OpenCL program object for an OpenCL context.

context must be a valid OpenCL context.

source is the program source code.

build is a flag that indicates whether to build the program.

err returns an appropriate error code. If err is NULL, no error code is returned.

The constructor

cl::Program::Program(const Context& context,

 const Sources& sources,

 cl_int * err = NULL)

creates an OpenCL program object for a context and loads the source code specified by the text strings in each

element of the vector sources into the program object.

context must be a valid OpenCL context.

sources is a vector of source/size tuples that make up the source code.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::Program::Program returns a valid program object and sets err to CL_SUCCESS if it creates the program

object successfully. Otherwise, it returns one of the following error values returned in err:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if sources contains zero entries or if any entry in sources contains a tuple with
NULL. CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

The constructor

cl::Program::Program(const Context& context,

 const VECTOR_CLASS<Device>& devices,

 const Binaries& binaries,

 VECTOR_CLASS<cl_int> * binaryStatus = NULL,

 cl_int * err = NULL)

creates an OpenCL program object for a context and loads the binary bits specified by the binary in each

element of the vector binaries into the program object.

context must be a valid OpenCL context.

devices is a list of devices. devices must be of non-zero length and each device specified by devices must be

associated with context. The binaries are loaded for devices specified in this list. The devices associated with

the program object will be the given devices.

30

binaries is a vector of program binaries to be loaded for devices specified by devices. For each devices[i], the

program binary for that device is binaries[i].

binary_status returns whether the program binary for each device specified in devices was loaded successfully.

If binary_status is NULL, it is ignored. If non-NULL, binary_status will be resized to match the length of

devices. binary_status[i] returns CL_SUCCESS if the binary for devices[i] is successfully loaded or

CL_INVALID_BINARY if program binaries[i] is NULL.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::Program::Program returns a valid program object and sets err to CL_SUCCESS if it creates the program

object successfully. Otherwise, it returns one of the following error values returned in err:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_VALUE if devices is of length zero or if the length of binaries is not equal to the length of

devices or if any entry in binaries is not valid..

 CL_INVALID_DEVICE if OpenCL devices listed in devices are not in the list of devices associated
with context.

 CL_INVALID_BINARY if an invalid program binary was encountered for any device. binaryStatus

returns specific status for each device.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The constructor

cl::Program::Program(const Context& context,

 const VECTOR_CLASS<Device>& devices,

 STRING_CLASS& kernelNames,

 cl_int * err = NULL)

creates an OpenCL program object with a set of built-in kernel names for a context.

context must be a valid OpenCL context.

devices is a vector list of devices that are in context. devices must be of non-zero length and each device

specified by devices must be associated with context. The binaries are loaded for devices specified in this list.

The devices associated with the program object will be the given devices.

kernelNames is a semi-colon separated list of built-in kernel names.

cl::Program::Program returns a valid program object and sets err to CL_SUCCESS if it creates the program

object successfully.

The method

cl_int cl::Program::build(const VECTOR_CLASS<Device>& devices,

31

 const char * options = NULL,

 (CL_CALLBACK * pfn_notify)

 (cl_program,

 void * user_data) = NULL,

 void * data = NULL)

builds (compiles and links) a program executable from the program source or binary for all the devices or

specific devices in the OpenCL context associated with program.

devices is a list of devices associated with program. If devices is of length zero, the program executable is built

for all devices associated with program for which a source or binary has been loaded. If devices is of non-zero

length, the program executable is built for devices specified in the list for which a source or binary has been

loaded.

options is a pointer to a string that describes the build options to be used for building the program executable.

Section 5.6.4 of the OpenCl Specification Version 1.2 describes the supported options.

pfn_notify is a function pointer to a notification routine. The notification routine is a callback function that an

application can register and which is called when the program executable has been built (successfully or

unsuccessfully). If pfn_notify is not NULL, cl::Program::build does not need to wait for the build to complete

and can return immediately. If pfn_notify is NULL, cl::Program::build does not return until the build has

completed. This callback function may be called asynchronously by the OpenCL implementation. It is the

application’s responsibility to ensure that the callback function is thread-safe.

data is passed as an argument when pfn_notify is called. data can be NULL.

cl::Program::build returns CL_SUCCESS on success. Otherwise, it returns one of the following errors:

 CL_INVALID_VALUE if pfn_notify is NULL but data is not NULL.

 CL_INVALID_DEVICE if OpenCL devices listed in devices are not in the list of devices associated
with program

 CL_INVALID_BINARY if program is created with the cl::Program::Program taking a list of binaries

and devices listed in devices do not have a valid program binary loaded.

 CL_INVALID_BUILD_OPTIONS if the build options specified by options are invalid.

 CL_INVALID_OPERATION if the build of a program executable for any of the devices listed in
devices by a previous call to cl::Program::build for program has not completed.

 CL_COMPILER_NOT_AVAILABLE if program is created from source and a compiler is not available,

i.e., CL_DEVICE_COMPILER_AVAILABLE specified in table 4.3 is set to CL_FALSE.

 CL_BUILD_PROGRAM_FAILURE if there is a failure to build the program executable. This error is
returned if cl::Program::build does not return until the build has completed.

 CL_INVALID_OPERATION if there are kernel objects attached to program.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The method

cl_int cl::Program::build(const char * options = NULL,

 (CL_CALLBACK * pfn_notify)

32

 (cl_program,

 void * user_data) = NULL,

 void * data = NULL)

builds (compiles and links) a program executable from the program source or binary in the OpenCL context

associated with program.

options is a pointer to a string that describes the build options to be used for building the program executable.

The list of supported options is described in section 5.6.4 of the OpenCL Specification Version 1.2.

pfn_notify is a function pointer to a notification routine. The notification routine is a callback function that an

application can register and which is called when the program executable has been built (successfully or

unsuccessfully). If pfn_notify is not NULL, cl::Program::build does not need to wait for the build to complete

and can return immediately. If pfn_notify is NULL, cl::Program::build does not return until the build has

completed. This callback function may be called asynchronously by the OpenCL implementation. The

application must ensure that the callback function is thread-safe.

data is passed as an argument when pfn_notify is called. data can be NULL.

cl::Program::build returns CL_SUCCESS on success.

The method

cl_int cl::Program::compile(const char * options = NULL,

 (CL_CALLBACK * pfn_notify)

 (cl_program,

 void * user_data) = NULL,

 void * data = NULL)

compiles (but does not link) a program executable from the program source or binary in the OpenCL context

associated with program.

options is a pointer to a string that describes the compilation options to be used for building the program

executable. Section 5.6.4 of the OpenCL SpecificationVersion 1.2 describes the list of supported options.

pfn_notify is a function pointer to a notification routine. The notification routine is a callback function that an

application can register and which is called when the program executable has been built (successfully or

unsuccessfully). If pfn_notify is not NULL, cl::Program::compile does not need to wait for the build to

complete and can return immediately. If pfn_notify is NULL, cl::Program::compile does not return until the

build has completed. This callback function may be called asynchronously by the OpenCL implementation. It is

the application’s responsibility to ensure that the callback function is thread-safe.

data is passed as an argument when pfn_notify is called. data can be NULL.

cl::Program::compile returns CL_SUCCESS on success.

The function

cl::Program linkProgram(Program input1,

 Program input2,

33

 const char * options = NULL,

 (CL_CALLBACK * pfn_notify)

 (cl_program,

 void * user_data) = NULL,

 void * data = NULL,

 cl_int *err = NULL)

links programs input1 and input2.

input1 and input2 are program objects.

options is a pointer to a string that describes the compilation options to be used for linking the program

executable. The list of supported options is described in section 5.6.4 of the OpenCL Specification 1.2.

pfn_notify is a function pointer to a notification routine. The notification routine is a callback function registered

by the application which is called when the program executable has been built (successfully or unsuccessfully).

If pfn_notify is not NULL, cl::Program::linkProgram does not need to wait for the build to complete and can

return immediately. If pfn_notify is NULL, cl::Program::linkProgram does not return until the build has

completed. This callback function may be called asynchronously by the OpenCL implementation. The

application must ensure that the callback function is thread-safe.

data is passed as an argument when pfn_notify is called. data can be NULL.

linkProgram returns CL_SUCCESS if executed successfully.

The function

cl::Program linkProgram(VECTOR_CLASS<Program> InputPrograms,

 const char * options = NULL,

 (CL_CALLBACK * pfn_notify)

 (cl_program,

 void * user_data) = NULL,

 void * data = NULL,

 cl_int *err = NULL)

links a set of programs.

InputPrograms is a set of program objects.

options is a pointer to a string that describes the compilation options to be used for linking the program

executable. The list of supported options is described in section 5.6.4 of the OpenCL Specification Version 1.2.

pfn_notify is a function pointer to a notification routine. The notification routine is a callback function registered

by the application which is called when the program executable has been built (successfully or unsuccessfully).

If pfn_notify is not NULL, cl::Program::linkProgram does not need to wait for the build to complete and

returns immediately. If pfn_notify is NULL, cl::Program::linkProgram does not return until the build has

completed. This callback function may be called asynchronously by the OpenCL implementation. The

application must ensure that the callback function is thread-safe.

data is passed as an argument when pfn_notify is called. data can be NULL.

34

err returns an appropriate error code. If err is NULL, no error code is returned.

linkProgram returns CL_SUCCESS if executed successfully.

The method

 template <typename T>

 cl_int cl::Program::getInfo(cl_program_info name,

 T * param)

gets specific information about the OpenCL Program. Table 5.13 of the OpenCL Specification Version 1.2

specifies the information that can be queried. The table below lists cl_program_info values that differ in return

type between the OpenCL C API and the OpenCL C++ API.

cl_program_info C++ return Type

CL_PROGRAM_BINARIES VECTOR_CLASS<char *>

CL_PROGRAM_BINARY_SIZES VECTOR_CLASS<::size_t>

CL_PROGRAM_CONTEXT cl::Context

CL_PROGRAM_DEVICES VECTOR_CLASS<cl::Device>

CL_PROGRAM_KERNEL_NAMES STRING_CLASS

CL_PROGRAM_SOURCE STRING_CLASS
Table 6: Differences in cl::Program::getInfo return type vs. OpenCL Specification table 5.13

T is a compile time argument that is the return for the specific information being queried. It corresponds to the

values in table 5.13.

name is an enumeration constant that identifies the program information being queried. It can be one of the

values specified in table 5.13.

param is a pointer to a memory location where the appropriate values for a given name as specified in table

5.13 is returned. If param is NULL, it is ignored.

cl::Program::getInfo returns CL_SUCCESS on success. Otherwise, it returns:

 CL_INVALID_VALUE if name is not one of the supported values.

The method

template <cl_int name> typename

detail::param_traits<detail::cl_program_info, name>::param_type

cl::Program::getInfo(void)

gets specific information about the OpenCL program. Table 5.13 of the OpenCL Specification Version 1.2

specifies the information that can be queried. The table above lists cl_program_info values that differ in return

type between the OpenCL C API and the OpenCL C++ API.

name is an enumeration constant that identifies the program information being queried. It can be one of the

values specified in table 5.13.

cl::Program::getInfo returns the appropriate value for a given name as specified in table 5.13.

35

The method

template <typename T>

cl_int cl::Program::getBuildInfo(cl_program_build_info name,

 T * param)

returns build information for each device in the program object. Table 5.14 of the OpenCL Specification

Version 1.2 specifies the information that can be queried. The table below lists cl_program_build_info values

that differ in return type between the OpenCL C API and the OpenCL C++ API.

cl_program_build_info C++ return Type

CL_PROGRAM_BUILD_LOG STRING_CLASS

CL_PROGRAM_BUILD_OPTIONS STRING_CLASS
Table 7: Differences in cl::Program::getBuildInfo return type vs. OpenCL Specification table 5.14

T is a compile time argument that is the return type for the specific information being queried. It corresponds to

the values in tables 5.14.

name is an enumeration constant that identifies the program build information being queried. It can be one of

the values specified in table 5.14.

param is a pointer to a memory location where the appropriate values for a given name as specified in table

5.14 is returned. If param is NULL, it is ignored.

cl::Program::getBuildInfo returns CL_SUCCESS on success. Otherwise, it returns:

 CL_INVALID_VALUE if name is not one of the supported values.

The method

template <cl_int name> typename

detail::param_traits<detail::cl_program_info, name>::param_type

cl::Program::getBuildInfo(void)

returns build information for each device in the program object. Table 5.14 of the OpenCL Specification

Version 1.2 specifies the information that can be queried. The table above lists cl_program_build_info values

that differ in return type between the OpenCL C API and the OpenCL C++ API.

name is an enumeration constant that identifies the program information being queried. It can be one of the

values specified in table 5.14.

cl::Program::getBuildInfo returns the appropriate value for a given name as specified in table 5.14.

The method

 cl_int cl::Program::createKernels(const VECTOR_CLASS<Kernel> * kernels)

creates kernel objects (i.e., objects of type cl::Kernel, see section 3.6 below) for all kernels in the program.

kernels is a pointer to a vector where the kernel objects for kernels in the program are returned.

36

c::Program::createKernels returns CL_SUCCESS if the kernel objects were successfully allocated.

Otherwise, it returns one of the following errors:

 CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built executable for any device
in program.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

3.6 Kernels

Class cl::Kernel provides functionality for working with OpenCL kernels.

The constructor

cl::Kernel::Kernel(const Program& program,

 const char * name,

 cl_int * err = NULL)

creates a kernel object.

program is a program object with a successfully built executable.

name is a function name in the program declared with the __kernel qualifier.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::Kernel::Kernel returns a valid kernel object and sets err to CL_SUCCESS if it creates the kernel object

successfully. Otherwise, it returns one of the following error values returned in err:

 CL_INVALID_PROGRAM if program is not a valid program object.

 CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built executable for program.

 CL_INVALID_KERNEL_NAME if name is not found in program.

 CL_INVALID_KERNEL_DEFINITION if the function definition for __kernel function given by name
such as the number of arguments, the argument types are not the same for all devices for which the

program executable has been built.

 CL_INVALID_VALUE if name is NULL.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The method

template <typename T>

cl_int cl::Kernel::getInfo(cl_kernel_info name,

 T * param)

37

gets specific information about the OpenCL kernel. Table 5.15 of the OpenCL Specification Version 1.2

specifies the information that can be queried. The table below lists cl_kernel_info values that differ in return

type between the OpenCL C API and the OpenCL C++ API.

cl_kernel_info C++ return Type

CL_KERNEL_ATTRIBUTES STRING_CLASS

CL_KERNEL_CONTEXT cl::Context

CL_KERNEL_FUNCTION_NAME STRING_CLASS

CL_KERNEL_PROGRAM cl::Program
Table 8: Differences in cl::Kernel::getInfo return type vs. OpenCL Specification table 5.15

T is a compile time argument that is the return type for the specific information being queried. It corresponds to

the values in table 5.15.

name is an enumeration constant that identifies the kernel information being queried. It can be one of the values

specified in table 5.15.

param is a pointer to a memory location where the appropriate values for a given name as specified in table

5.15 is returned. If param is NULL, it is ignored.

cl::Kernel::getInfo returns CL_SUCCESS on success. Otherwise, it returns:

 CL_INVALID_VALUE if name is not one of the supported values.

The method

template <cl_int name> typename

detail::param_traits<detail::cl_kernel_info, name>::param_type

cl::Kernel::getInfo(void)

gets specific information about the OpenCL kernel. Table 5.15 of the OpenCL Specification Version 1.2

specifies the information that can be queried. The table above lists cl_kernel_info values that differ in return

type between the OpenCL C API and the OpenCL C++ API.

name is an enumeration constant that identifies the kernel information being queried. It can be one of the values

specified in table 5.15.

cl::Kernel::getInfo returns the appropriate value for a given name as specified in table 5.15.

The method

template <typename T>

cl_int cl::Kernel::getArgInfo(cl_uint argIndex,

 cl_kernel_arg_info name,

 T * param)

gets specific information about an OpenCL kernel argument. Table 5.17 of the OpenCL Specification Version

1.2 specifies the information that can be queried. The table below lists cl_kernel_arg_info values that differ in

return type between the OpenCL C API and the OpenCL C++ API.

38

cl_kernel_arg_info C++ return Type

CL_KERNEL_ARG_NAME STRING_CLASS

CL_KERNEL_ARG_TYPE_NAME STRING_CLASS
Table 9: Differences in cl::Kernel::getArgInfo return type vs. OpenCL Specification table 5.17

T is a compile time argument that is the return type for the specific information being queried. It corresponds to

the values in table 5.15.

argIndex is the index of the kernel argument being queried.

name is an enumeration constant that identifies the kernel argument information being queried. It can be one of

the values specified in table 5.17.

param is a pointer to a memory location where the appropriate values for a given name as specified in table

5.17 is returned. If param is NULL, it is ignored.

cl::Kernel::getArgInfo returns CL_SUCCESS on success.

The method

template <cl_int name> typename

detail::param_traits<detail::cl_kernel_arg_info, name>::param_type

cl::Kernel::getArgInfo(xl_uint argIndex, cl_int* err)

gets specific information about an OpenCL kernel argument. Table 5.15 of the OpenCL Specification Version

1.2 specifies the information that can be queried. The table above lists cl_kernel_arg_info values that differ in

return type between the OpenCL C API and the OpenCL C++ API.

name is an enumeration constant that identifies the kernel information being queried. It can be one of the values

specified in table 5.17.

argIndex is the index of the kernel argument being queried.

cl::Kernel::getArgInfo returns the appropriate value for a given name as specified in table 5.17.

The method

template <typename T>

cl_int cl::Kernel::getWorkGroupInfo(cl_kernel_work_group_info name,

 T * param)

gets specific information about the OpenCL kernel object that may be specifc to a device. Table 5.16 of the

OpenCL Specification Version 1.2 specifies the information that can be queried. The table below lists

cl_kernel_work_group_info values that differ in return type between the OpenCL C API and the OpenCL C++

API.

cl_kernel_work_group_info C++ return Type

39

CL_KERNEL_COMPILE_WORK_GROUP_SIZE cl::size_t<3>
2

Table 10: Differences in cl::Kernel::getWorkGroupInfo return type vs. OpenCL Specification table 5.16

T is a compile time argument that is the return type for the specific information being queried. It corresponds to

the values in tables 5.16.

name is an enumeration constant that identifies the kernel information being queried. It can be one of the values

specified in table 5.16.

param is a pointer to a memory location where the appropriate values for a given name as specified in table

5.16 is returned. If param is NULL, it is ignored.

cl::Kernel::getInfo returns CL_SUCCESS on success. Otherwise, it returns:

 CL_INVALID_VALUE if name is not one of the supported values.

The method

template <cl_int name> typename

detail::param_traits<detail::cl_kernel_work_group_info, name>::param_type

cl::Kernel::getWorkGroupInfo(void)

gets specific information about the OpenCL kernel object that may be specific to a device. Table 5.16 of the

OpenCL Specification Version 1.2 specifies the information that can be queried. The table above lists

cl_kernel_work_group_info values that differ in return type between the OpenCL C API and the OpenCL C++

API.

name is an enumeration constant that identifies the kernel information being queried. It can be one of the values

specified in table 5.16.

cl::Kernel::getWorkGroupInfo returns the appropriate value for a given name as specified in table 5.16.

The method

template <typename T>

cl_int cl::Kernel::setArg(cl_uint index,

 T value)

sets the argument value for a specific argument of a kernel.

T is a compile time argument that determines the type of a kernel argument being set. It can be one of the

following:

 A cl::Memory object. e.g. a cl::Buffer or cl::Image3D would be possible values.

 A cl::Sampler object.

 A value of type cl::LocalSpaceArg
3
, which corresponds to an argument of __local in the kernel object.

2
 cl::size_t<3> is a internal type that can be treated as a 3D array whose components correspond to x,y,z values

of the work-group size.

40

 A constant value that is passed by value to the kernel.

index is the argument index. Arguments to the kernel are referred by indices that go from 0

for the leftmost argument to n - 1, where n is the total number of arguments declared by a kernel.

value is the data that should be used aas rthe argument value for argument specified by index.

cl::Kernel::setArg returns CL_SUCCESS if the function was executed successfully. Otherwise, it returns one

of the following errors:

 CL_INVALID_ARG_INDEX if index is not a valid argument index.

 CL_INVALID_MEM_OBJECT for an argument declared to be a memory object when the specified
value is not a valid memory object.

 CL_INVALID_SAMPLER for an argument declared to be of type cl::Sampler when the specified value
is not a valid sampler object.

3.6.1 Kernel functors

Kernel functors provide additional functionality to simplify kernel invocations. The template

template <typename T0, typename T1 = detail::NullType, typename T2 = detail::NullType,

typename T3 = detail::NullType, typename T4 = detail::NullType, typename T5 = detail::NullType,

typename T6 = detail::NullType, typename T7 = detail::NullType, typename T8 = detail::NullType,

typename T9 = detail::NullType, typename T10 = detail::NullType, typename T11 = detail::NullType,

typename T12 = detail::NullType, typename T13 = detail::NullType, typename T14 = detail::NullType,

typename T15 = detail::NullType, typename T16 = detail::NullType, typename T17 = detail::NullType,

typename T18 = detail::NullType, typename T19 = detail::NullType, typename T20 = detail::NullType,

typename T21 = detail::NullType, typename T22 = detail::NullType, typename T23 = detail::NullType,

typename T24 = detail::NullType, typename T25 = detail::NullType, typename T26 = detail::NullType,

typename T27 = detail::NullType, typename T28 = detail::NullType, typename T29 = detail::NullType,

typename T30 = detail::NullType, typename T31 = detail::NullType>

struct make_kernel :: detail::functionImplementation<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10,

 T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, T28, T29, T30, T31>

 cl::make_kernel::make_kernel(

 const Program &program,

 const STRING_CLASS name,

 cl_int *err = NULL)

makes a kernel functor for a kernel with 1 to 32 arguments.

T0 to T31 are the kernel argument types.

program is the OpenCL program that defines the kernel.

name is the name of the kernel functor.

3
 The function cl::LocalSpaceArg cl::Local(::size_t) can be used to construct arguments specifying the size of a

Local kernel argument. For example, cl::Local(100) would allocate sizeof(cl_char) * 100 of local memory.

41

err returns an appropriate error code. If err is NULL, no error is returned.

The template

template <typename T0, typename T1 = detail::NullType, typename T2 = detail::NullType,

typename T3 = detail::NullType, typename T4 = detail::NullType, typename T5 = detail::NullType,

typename T6 = detail::NullType, typename T7 = detail::NullType, typename T8 = detail::NullType,

typename T9 = detail::NullType, typename T10 = detail::NullType, typename T11 = detail::NullType,

typename T12 = detail::NullType, typename T13 = detail::NullType, typename T14 = detail::NullType,

typename T15 = detail::NullType, typename T16 = detail::NullType, typename T17 = detail::NullType,

typename T18 = detail::NullType, typename T19 = detail::NullType, typename T20 = detail::NullType,

typename T21 = detail::NullType, typename T22 = detail::NullType, typename T23 = detail::NullType,

typename T24 = detail::NullType, typename T25 = detail::NullType, typename T26 = detail::NullType,

typename T27 = detail::NullType, typename T28 = detail::NullType, typename T29 = detail::NullType,

typename T30 = detail::NullType, typename T31 = detail::NullType>

struct make_kernel :: detail::functionImplementation<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9, T10,

 T11, T12, T13, T14, T15, T16, T17, T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, T28, T29, T30, T31>

 cl::make_kernel::make_kernel(

 const Kernel kernel,

 cl_int *err = NULL)

makes a kernel functor for the given kernel with 1 to 32 arguments.

T0 to T31 are the kernel argument types.

err returns an appropriate error code. If err is NULL, no error is returned.

The overloaded operator () for a kernel functor invocation takes one of the following forms:

 Event operator() (EnqueueArgs& args,

 T0 t0, T1 t1 = NullType, …, T31 t31 = NullType)

 Event operator() (EnqueueArgs& args,

 const Event& waitEvent,

 T0 t0, T1 t1 = NullType, …, T31 t31 = NullType)

 Event operator() (EnqueueArgs &args,

 const VECTOR_CLASS<Event>& waitEvents,

 T0 t0, T1 t1 = NullType, …, T31 t31 = NullType)

The first enqueues the kernel’s arguments, invokes the kernel, and returns an event object representing the

kernel execution. The second and third forms are similar, but the second waits for the completion of the given

waitEvent before invoking the kernel, while the third waits for completion of all waitEvents before invoking the

kernel.

For example, suppose myKernelProgram is a Program with a string defining the source for kernel myKernel,

and suppose myKernel takes three Buffer arguments (two input buffers and an output buffer). Then:

 typedef cl::make_kernel <cl::Buffer&, cl::Buffer&, cl::Buffer&> KernelType;

 std::function<KernelType::type_> myKernel = KernelType(myKernelProgram, “myKernel”);

constructs kernel functor myKernel. Similarly, using auto (for C++11 users):

42

 auto myKernel = cl::make_kernel<cl::Buffer&, cl::Buffer&, cl::Buffer&> (myKernelProgram,

 “myKernel”);

To invoke the kernel with enqueued input buffers inBuf1 and inBuf2 of size n and output buffer outBuf:

 myKernel(cl::EnqueueArgs(cl::NDRange(n), cl::NDRange(n)), inBuf1, inBuf2, outBuf);

Class EnqueueArgs is described in the next subsection below.

Due to the way the parameter state of the underlying kernel objects is defined, functors that reference the same

kernel object must not be called concurrently.

3.6.2 EnqueueArgs

Class cl::EnqueueArgs parameterizes argument dispatch. Its constructors, listed below, allow for orthogonal

overloading of dispatch parameters and parameter count for functors. If a single event is passed, EnqueueArgs

constructs a list of one event for the enquque. If a vector of events is passed, it constructs a list of input event

dependencies. Argument dispatch occurs through the default queue or through a specified queue.

The constructors for EnqueueArgs are:

cl::EnqueueArgs::EnqueueArgs(NDRange global)

cl::EnqueueArgs::EnqueueArgs(NDRange global, NDRange local)

cl::EnqueueArgs::EnqueueArgs(NDRange offset, NDRange global, NDRange local)

cl::EnqueueArgs::EnqueueArgs(Event e, NDRange global)

cl::EnqueueArgs::EnqueueArgs(Event e, NDRange global, NDRange local)

cl::EnqueueArgs::EnqueueArgs(Event e, NDRange offset, NDRange global, NDRange local)

cl::EnqueueArgs::EnqueueArgs(const VECTOR_CLASS<Event> &events, NDRange global)

cl::EnqueueArgs::EnqueueArgs(const VECTOR_CLASS<Event> &events, NDRange global,

NDRange local)

cl::EnqueueArgs::EnqueueArgs(const VECTOR_CLASS<Event> &events, NDRange offset,

NDRange global, NDRange local)

cl::EnqueueArgs::EnqueueArgs(CommandQueue &queue, NDRange global)

cl::EnqueueArgs::EnqueueArgs(CommandQueue &queue, NDRange global, NDRange local)

cl::EnqueueArgs::EnqueueArgs(CommandQueue &queue, NDRange offset, NDRange global,

NDRange local)

cl::EnqueueArgs::EnqueueArgs(CommandQueue &queue, Event e, NDRange global)

cl::EnqueueArgs::EnqueueArgs(CommandQueue &queue, Event e, NDRange global,

NDRange local)

cl::EnqueueArgs::EnqueueArgs(CommandQueue &queue, Event e, NDRange offset,

NDRange global, NDRange local)

cl::EnqueueArgs::EnqueueArgs(CommandQueue &queue,

43

const VECTOR_CLASS<Event> &events, NDRange global)

cl::EnqueueArgs::EnqueueArgs(CommandQueue &queue,

const VECTOR_CLASS<Event> &events, NDRange global, NDRange local)

cl::EnqueueArgs::EnqueueArgs(CommandQueue &queue,

const VECTOR_CLASS<Event> &events, NDRange offset, NDRange global,

NDRange local)

global is a global work size corresponding to the global_work_size argument of the underlying OpenCL

EnqueueNDRangeKernel call.

local is a local work size corresponding to the local_work_size argument of the underlying OpenCL

EnqueueNDRangeKernel call. If local is not specified, a NULL local_work_size is used.

offset is an offset corresponding to the global_work_offset argument of the underlying OpenCL

EnqueueNDRangeKernel call. If offset is not specified, a NULL global_work_offset is used.

e is an Event that must be completed before the EnqueueArgs may be executed, and similarly

events is a list of events that must be completed before the EnqueueArgs may be executed. If neither e nor

events is specified, the EnqueueArgs is executed without waiting on any events.

queue is a CommandQueue to which the EnqueueArgs is submitted. If queue is not specified, EnqueueArgs

is submitted to the default queue.

3.7 Events

Class cl::Event provides functionality for working with OpenCL events.

The method

template <typename T>

cl_int cl::Event::getInfo(cl_event_info name,

T * param)

gets specific information about the OpenCL event. Table 5.18 of the OpenCL Specification Version 1.2

specifies the information that can be queried. The table below lists cl_event_info values that differ in return

type between the OpenCL C API and the OpenCL C++ API.

cl_event_info C++ return Type

CL_EVENT_CONTEXT cl::Context

CL_EVENT_COMMAND_QUEUE cl::CommandQueue
Table 11: Differences in cl::Event::getInfo return type vs. OpenCL Specification table 5.18

T is a compile time argument that is the return type for the specific information being queried. It corresponds to

the values in tables 5.18.

name is an enumeration constant that identifies the event information being queried. It can be one of the values

specified in table 5.18.

44

param is a pointer to a memory location where the appropriate values for a given name as specified in table

5.18 is returned. If param is NULL, it is ignored.

cl::Event::getInfo returns CL_SUCCESS on success. Otherwise, it returns:

 CL_INVALID_VALUE if name is not one of the supported values.

The method

template <cl_int name> typename

detail::param_traits<detail::cl_event_info, name>::param_type

cl::Event::getInfo(void)

gets specific information about an OpenCL event. Table 5.18 of the OpenCL Specification Version 1.2

specifies the information that can be queried. The table above lists cl_event_info values that differ in return

type between the OpenCL C API and the OpenCL C++ API.

name is an enumeration constant that identifies the event information being queried. It can be one of the values

specified in table 5.18.

cl::Event::getInfo returns the appropriate value for a given name as specified in table 5.18.

The method

template <typename T>

cl_int cl::Event::getProfilingInfo(cl_profiling_info name,

 T * param)

returns profiling information for the command associated with event. Table 5.19 of the OpenCL Specification

Version 1.2 specifies the information that can be queried.

T is a compile time argument that is the return type for the specific information being queried. It corresponds to

the values in tables 5.19.

name is an enumeration constant that identifies the profiling information being queried. It can be one of the

values specified in table 5.19.

param is a pointer to a memory location where the appropriate values for a given name as specified in table

5.19 is returned. If param is NULL, it is ignored.

cl::Event::getInfo returns CL_SUCCESS on success. Otherwise, it returns:

 CL_INVALID_VALUE if name is not one of the supported values.

The method

template <cl_int name> typename

detail::param_traits<detail::cl_profiling_info, name>::param_type

cl::Event::getProfilingInfo(void)

45

returns profiling information for the command associated with event. Table 5.19 of the OpenCL Specification

Version 1.2 specifies the information that can be queried.

name is an enumeration constant that identifies the profiling information being queried. It can be one of the

values specified in table 5.19.

cl::Event::getProfilingInfo returns the appropriate value for a given name as specified in table 5.19.

The method

cl_int cl::Event::wait(void)

waits on the host thread for the command associated with the particular event to complete.

cl::Event::wait returns CL_SUCCESS if the function was executed successfully. Otherwise, it returns one of

the following errors:

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

The method

cl_int cl::Event::setCallback(cl_int type,

void (CL_CALLBACK * pfn_notify)

 (cl_event event,

 cl_int command_exec_status,

 void * user_data),

 void * user_data = NULL)

registers a user callback function for a specific command execution status. The registered callback function is

called when the execution status of command associated with event changes to the execution status specified by

command_exec_status.

type specifies the command execution status for which the callback is registered. The command execution

callback mask values for which a callback can be registered are: CL_COMPLETE. There is no guarantee that

the callback functions registered for various execution status values for an event is called in the exact order that

the execution status of a command changes.

pfn_notify is the event callback function registered by the application. This callback function may be called

asynchronously by the OpenCL implementation. It is the application’s responsibility to ensure that the callback

function is thread-safe. The parameters to the callback function are:

 event is the event object for which the callback function is invoked.

 command_exec_status represents the execution status of command for which this callback function is
invoked. Refer to table 5.15 for the command execution status values. If the callback is called as the

result of the command associated with event being abnormally terminated, an appropriate error code for

the error that caused the termination is passed to command_exec_status instead.

 user_data is a pointer to user supplied data.

46

user_data is passed as the user_data argument when pfn_notify is called. user_data can be

NULL.

cl:Event::setCallback returns CL_SUCCESS on success. Otherwise, it returns one of the following errors:

 CL_INVALID_VALUE if pfn_notify is NULL or if command_exec_callback_type is not a valid
command execution status.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The static method

static cl_int cl::Event::waitForEvents(const VECTOR_CLASS<Event>& events)

waits on the host thread for commands identified by event objects in events to complete. A command is

considered complete if its execution status is CL_COMPLETE or a negative value. The events specified in

events act as synchronization points.

cl::Event::waitForEvents returns CL_SUCCESS if the function was executed successfully. Otherwise, it

returns one of the following errors:

 CL_INVALID_VALUE if events is of length zero.

 CL_INVALID_CONTEXT if events specified in events do not belong to the same context.

 CL_INVALID_EVENT if event objects specified in events are not valid event objects.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

3.8 User Events

Class cl::UserEvent : public Event provides functionality for working with OpenCL user events.

The constructor

cl::UserEvent::UserEvent(Context& context,

 cl_int * err = NULL)

creates a user event object. User events allow applications to enqueue commands that wait on a user event to

finish before the command is executed by the device.

context must be a valid OpenCL context.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::UserEvent::UserEvent returns a valid object and sets err to CL_SUCCESS if it creates the user event

object successfully. Otherwise, it returns one of the following error values returned in err:

47

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The method

cl_int cl::UserEvent::setStatus(cl_int status)

sets the execution status of a user event object.

status specifies the new execution status to be set and can be CL_COMPLETE or a negative integer value to

indicate an error.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::UserEvent::setStatus returns CL_SUCCESS if the function was executed successfully.

Otherwise, it returns one of the following errors:

 CL_INVALID_VALUE if the status is not CL_COMPLETE or a negative integer value.

 CL_INVALID_OPERATION if the status for event has already been changed by a previous call to
cl::UserEvent::setStatus.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

3.9 Command Queues

Class cl::NDRange provides functionality for working with global and local NDRanges, as described in section

5.1 of the OpenCL Specification. This is a necessary type for certain enqueue commands.

The constructor

cl::NDRange::NDRange(::size_t size0)

returns a 1D range.

size0 describes the number of global or local work-items in dimension 0.

The constructor

cl::NDRange::NDRange (::size_t size0,

 ::size_t size1)

returns a 2D range.

48

size0 describes the number of global or local work-items in dimension 0.

size1 describes the number of global or local work-items in dimension 1.

The constructor

cl::NDRange::NDRange (::size_t size0,

 ::size_t size1,

 ::size_t size2)

returns a 3D range.

size0 describes the number of global or local work-items in dimension 0.

size1 describes the number of global or local work-items in dimension 1.

size2 describes the number of global or local work-items in dimension 2.

The operator

cl::NDRange::operator const ::size_t * () const

returns a pointer to an array of, 1, 2, or 3 elements of the range.

The method

::size_t cl::NDRange::dimensions(void)

returns the number of dimensions defined in the range.

Class cl::CommandQueue provides functionality for working with OpenCL command-queues.

The constructor

cl::CommandQueue::CommandQueue(

const Context& context,

const Device& device,

cl_command_queue_properties properties = 0,

cl_int * err = NULL)

creates a command-queue on a specific device.

device must be a device associated with context. It can either be in the list of devices specified when context is

created using cl::Context::Context.

properties specifies a list of properties for the command-queue. This is a bit-field and is described in table 5.1

of the OpenCL Specification Version 1.2. Only command-queue properties specified in table 5.1 can be set in

properties; otherwise the value specified in properties is considered to be not valid.

err returns an appropriate error code. If err is NULL, no error code is returned.

49

The constructor

explicit cl::CommandQueue::CommandQueue(

const Context& context,

cl_command_queue_properties properties = 0,

cl_int * err = NULL)

creates a command-queue on the first device in the context.

properties specifies a list of properties for the command-queue. This is a bit-field and is described in table 5.1

of the OpenCL Specification Version 1.2. Only command-queue properties specified in table 5.1 can be set in

properties; otherwise the value specified in properties is considered to be not valid.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::CommandQueue::CommandQueue returns a valid command-queue and sets err to CL_SUCCESS if it

creates the command-queue successfully. Otherwise, it returns one of the following error values returned in err:

 CL_INVALID_CONTEXT if context is not a valid context.

 CL_INVALID_DEVICE if device is not a valid device or is not associated with context.

 CL_INVALID_VALUE if values specified in properties are not valid.

 CL_INVALID_QUEUE_PROPERTIES if values specified in properties are valid but are not supported
by the device.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

The method

template <typename T>

cl_int cl::CommandQueue::getInfo(cl_command_queue_info name,

 T * param)

gets specific information about an OpenCL command queue. Table 5.2 of the OpenCL Specification Version

1.2 specifies the information that can be queried. The table below lists cl_command_queue_info values that

differ in return type between the OpenCL C API and the OpenCL C++ API.

cl_command_queue_info C++ return Type

CL_QUEUE_CONTEXT cl::Context

CL_QUEUE_DEVICE cl::Device
Table 12: Differences in cl::CommandQueue::getInfo return type vs. OpenCL Specification table 5.2

T is a compile time argument that is the return type for the specific information being queried. It corresponds to

the values in table 5.2.

name is an enumeration constant that identifies the command-queue information being queried. It can be one of

the values specified in table 5.2.

50

param is a pointer to a memory location where the appropriate values for a given name as specified in table 5.2

is returned. If param is NULL, it is ignored.

cl::CommandQueue::getInfo returns CL_SUCCESS on success. Otherwise, it returns:

 CL_INVALID_VALUE if name is not one of the supported values.

The method

template <cl_int name> typename

detail::param_traits<detail::cl_command_queue_info, name>::param_type

cl::CommandQueue::getInfo(void)

gets specific information about the OpenCL command-queue. Table 5.2 of the OpenCL Specification Version

1.2 specifies the information that can be queried. The table above lists cl_command_queue_info values that

differ in return type between the OpenCL C API and the OpenCL C++ API.

name is an enumeration constant that identifies the command-queue information being queried. It can be one of

the values specified in table 5.2.

cl::CommandQueue::getInfo returns the appropriate value for a given name as specified in table 5.2.

The methods

cl_int cl::CommandQueue::enqueueReadBuffer(

const Buffer& buffer,

cl_bool blocking_read,

::size_t offset,

::size_t size,

const void * ptr,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

and

cl_int cl::CommandQueue::enqueueWriteBuffer(

const Buffer& buffer,

cl_bool blocking_write,

::size_t offset,

::size_t size,

const void * ptr,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueue a command to read from a buffer object to host memory or to write to a buffer object from host

memory.

buffer refers to a valid buffer object.

blocking_read and blocking_write indicate if the read and write operations are blocking or nonblocking.

51

If blocking_read is CL_TRUE (i.e., the read command is blocking),

cl::CommandQueue::enqueueReadBuffer does not return until the buffer data has been read and copied into

memory pointed to by ptr.

If blocking_read is CL_FALSE (i.e., the read command is non-blocking),

cl::CommandQueue::enqueueReadBuffer queues a non-blocking read command and returns. The contents of

the buffer to which ptr points cannot be used until the read command has completed. The event argument

returns an event object which can be used to query the execution status of the read command. When the read

command has completed, the contents of the buffer that ptr points to can be used by the application.

If blocking_write is CL_TRUE, the OpenCL implementation copies the data referred to by ptr and enqueues

the write operation in the command-queue. The memory pointed to by ptr can be reused by the application after

the cl::CommandQueue::enqueueWriteBuffer call returns.

If blocking_write is CL_FALSE, the OpenCL implementation will use ptr to perform a nonblocking write. As

the write is non-blocking the implementation can return immediately. The memory pointed to by ptr cannot be

reused by the application after the call returns. The event argument returns an event object which can be used to

query the execution status of the write command. When the write command has completed, the memory pointed

to by ptr can then be reused by the application.

offset is the offset in bytes in the buffer object to read from or write to.

size is the size in bytes of data being read or written.

ptr is the pointer to buffer in host memory where data is to be read into or to be written from.

events is the list of events that need to complete before this particular command can be executed. If events is

NULL or of zero length, then this particular command does not wait on any event to complete. The events

specified in events act as synchronization points. The context associated with events in events and the

command-queue must be the same.

event returns an event object that identifies this particular read / write command and can be used to query or

queue a wait for this particular command to complete. event can be NULL, in which case it will not be possible

for the application to query the status of this command or queue a wait for this command to complete.

cl::CommandQueue::enqueueReadBuffer and cl::CommandQueue::enqueueWriteBuffer return

CL_SUCCESS on success. Otherwise, it returns one of the following errors:

 CL_INVALID_CONTEXT if the context associated with command-queue and buffer are not the same
or if the context associated with command-queue and events in events are not the same.

 CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

 CL_INVALID_VALUE if the region being read or written specified by (offset, size) is out of bounds or

if ptr is a NULL value.

 CL_INVALID_EVENT_WAIT_LIST if event objects in events are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when
the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for

device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store

associated with buffer.

52

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

The methods

cl_int cl::CommandQueue::enqueueReadBufferRect(

const Buffer& buffer,

cl_bool blocking_read,

const size_t<3> buffer_offset,

const size_t<3> host_offset,

const size_t<3> region,

::size_t buffer_row_pitch,

::size_t buffer_slice_pitch,

::size_t host_row_pitch,

::size_t host_slice_pitch,

void * ptr,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

and

cl_int cl::CommandQueue::enqueueWriteBufferRect(

const Buffer& buffer,

cl_bool blocking_write,

const size_t<3> & buffer_offset,

const size_t<3> & host_offset,

const size_t<3>& region,

::size_t buffer_row_pitch,

::size_t buffer_slice_pitch,

::size_t host_row_pitch,

::size_t host_slice_pitch,

void * ptr,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueue command to read a 2D or 3D rectangular region from a buffer object to host memory or write a 2D or

3D rectangular region of a buffer object from host memory.

buffer refers to a valid buffer object.

blocking_read and blocking_write indicate if the read and write operations are blocking or nonblocking.

If blocking_read is CL_TRUE (i.e., the read command is blocking),

cl::ComamndQueue::enqueueReadBufferRect does not return until the buffer data has been read and copied

into memory pointed to by ptr.

If blocking_read is CL_FALSE (i.e., the read command is non-blocking),

cl::ComamndQueue::enqueueReadBufferRect queues a non-blocking read command and returns. The

contents of the buffer that ptr points to cannot be used until the read command has completed. The event

53

argument returns an event object which can be used to query the execution status of the read command. When

the read command has completed, the contents of the buffer that ptr points to can be used by the application.

If blocking_write is CL_TRUE, the OpenCL implementation copies the data referred to by ptr

and enqueues the write operation in the command-queue. The memory pointed to by ptr can be reused by the

application after the cl::ComamndQueue::enqueueWriteBufferRect call returns.

If blocking_write is CL_FALSE, the OpenCL implementation will use ptr to perform a nonblocking write. As

the write is non-blocking the implementation can return immediately. The memory pointed to by ptr cannot be

reused by the application after the call returns. The event argument returns an event object which can be used to

query the execution status of the write command. When the write command has completed, the memory pointed

to by ptr can then be reused by the application.

buffer_origin defines the (x, y, z) offset in the memory region associated with buffer. For a 2D rectangle region,

the z value given by buffer_origin[2] should be 0. The offset in bytes is

computed as buffer_origin[2] * buffer_slice_pitch + buffer_origin[1] * buffer_row_pitch +

buffer_origin[0].

host_origin defines the (x, y, z) offset in the memory region pointed to by ptr. For a 2D rectangle region, the z

value given by host_origin[2] should be 0. The offset in bytes is computed as

host_origin[2] * host_slice_pitch + host_origin[1] * host_row_pitch + host_origin[0].

region defines the (width, height, depth) in bytes of the 2D or 3D rectangle being read or written.

For a 2D rectangle copy, the depth value given by region[2] should be 1.

buffer_row_pitch is the length of each row in bytes to be used for the memory region associated

with buffer. If buffer_row_pitch is 0, buffer_row_pitch is computed as region[0].

buffer_slice_pitch is the length of each 2D slice in bytes to be used for the memory region associated with

buffer. If buffer_slice_pitch is 0, buffer_slice_pitch is computed as region[1] * buffer_row_pitch.

host_row_pitch is the length of each row in bytes to be used for the memory region pointed to by ptr. If

host_row_pitch is 0, host_row_pitch is computed as region[0].

host_slice_pitch is the length of each 2D slice in bytes to be used for the memory region pointed to by ptr. If

host_slice_pitch is 0, host_slice_pitch is computed as region[1] * host_row_pitch.

ptr is the pointer to buffer in host memory where data is to be read into or to be written from.

events specifies the events that need to complete before this particular command can be executed. If events is

NULL or of zero length, then this particular command does not wait on any event to complete. If events is not

NULL and non-zero length, the list of events must be valid. The events specified in events act as

synchronization points. The context associated with events in events and the command-queue must be the same.

event returns an event object that identifies this particular read / write command and can be used to query or

queue a wait for this particular command to complete. event can be NULL, in which case it will not be possible

for the application to query the status of this command or queue a wait for this command to complete.

cl::CommandQueue::enqueueReadBufferRect and cl::CommandQueue::enqueueWriteBufferRect return

CL_SUCCESS on success. Otherwise, it returns one of the following errors:

54

 CL_INVALID_CONTEXT if the context associated with command-queue and buffer are not the same
or if the context associated with command-queue and events in events are not the same.

 CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

 CL_INVALID_VALUE if the region being read or written specified by (buffer_offset, region) is out of
bounds.

 CL_INVALID_VALUE if ptr is a NULL value.

 CL_INVALID_EVENT_WAIT_LIST if event objects in events are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when

the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for

device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with buffer.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

The method

cl_int cl::CommandQueue::enqueueCopyBuffer(

const Buffer & src,

const Buffer & dst,

::size_t src_offset,

::size_t dst_offset,

::size_t size,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueues a command to copy a buffer object identified by src to another buffer object identified by dst. The

OpenCL context associated with command-queue, src and dst must be the same.

src refers to the offset where to begin copying data from src.

dst refers to the offset where to begin copying data into dst.

size refers to the size in bytes to copy.

events specifies events that need to complete before this particular command can be executed. If events is

NULL or of length zero, then this particular command does not wait on any event to complete. If events is not

NULL and a nonzero length, the list of events pointed to by events must be valid. The events specified in events

act as synchronization points. The context associated with events in events and the command-queue must be the

same.

event returns an event object that identifies this particular copy command and can be used to

query or queue a wait for this particular command to complete. event can be NULL, in which case it will not be
possible for the application to query the status of this command or queue a wait for this command to complete.

cl::CommandQueue::enqueueBarrier can be used instead.

55

cl::ComamndQueue::enqueueCopyBuffer returns CL_SUCCESS on success. Otherwise, it returns one of the

following errors:

 CL_INVALID_CONTEXT if the context associated with the command-queue, src and dst are not the
same or if the context associated with the command-queue and events in events are not the same.

 CL_INVALID_MEM_OBJECT if src and dst are not valid buffer objects.

 CL_INVALID_VALUE if src, dst, size, src + size or dst + size require accessing elements outside the
src and dst buffer objects respectively.

 CL_INVALID_EVENT_WAIT_LIST if event objects in events are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if src is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for

device associated with queue.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if dst is a sub-buffer object and offset specified when the

sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for

device associated with queue.

 CL_MEM_COPY_OVERLAP if src and dst are the same buffer object and the source and destination
regions overlap.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with src or dst.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The method

cl_int cl::CommandQueue::enqueueCopyBufferRect(

 const Buffer& src_buffer,

const Buffer& dst_buffer,

const size_t<3>& src_origin,

const size_t<3>& dst_origin,

const size_t<3>& region,

::size_t src_row_pitch,

::size_t src_slice_pitch,

::size_t dst_row_pitch,

::size_t dst_slice_pitch,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueues a command to copy a 2D or 3D rectangular region from the buffer object identified by

src to a 2D or 3D region in the buffer object identified by dst. The OpenCL context associated with the

command-queue, src and dst must be the same.

src_origin defines the (x, y, z) offset in the memory region associated with src_buffer. For a 2D rectangle

region, the z value given by src_origin[2] should be 0. The offset in bytes is computed

as src_origin[2] * src_slice_pitch + src_origin[1] * src_row_pitch + src_origin[0].

dst_origin defines the (x, y, z) offset in the memory region associated with dst_buffer. For a 2D rectangle

region, the z value given by dst_origin[2] should be 0. The offset in bytes is computed as dst_origin[2] *

dst_slice_pitch + dst_origin[1] * dst_row_pitch + dst_origin[0].

56

region defines the (width, height, depth) in bytes of the 2D or 3D rectangle being copied. For a

2D rectangle, the depth value given by region[2] should be 1.

src_row_pitch is the length of each row in bytes to be used for the memory region associated with src_buffer. If

src_row_pitch is 0, src_row_pitch is computed as region[0].

src_slice_pitch is the length of each 2D slice in bytes to be used for the memory region associated with

src_buffer. If src_slice_pitch is 0, src_slice_pitch is computed as region[1] *

src_row_pitch.

dst_row_pitch is the length of each row in bytes to be used for the memory region associated with dst_buffer. If

dst_row_pitch is 0, dst_row_pitch is computed as region[0].

dst_slice_pitch is the length of each 2D slice in bytes to be used for the memory region associated with

dst_buffer. If dst_slice_pitch is 0, dst_slice_pitch is computed as region[1] *

dst_row_pitch.

events specifies events that need to complete before this particular command can be executed. If events is

NULL or of length zero, then this particular command does not wait on any event to complete. If events is not

NULL and a nonzero length, the list of events pointed to by events must be valid. The events specified in events

act as synchronization points. The context associated with events in events and the command-queue must be the

same.

event returns an event object that identifies this particular copy command and can be used to query or queue a

wait for this particular command to complete. event can be NULL, in which case it will not be possible for the

application to query the status of this command or queue a wait for this command to complete.

cl::CommandQueue::enqueueCopyBufferRect returns CL_SUCCESS on success. Otherwise, it returns one

of the following errors:

 CL_INVALID_CONTEXT if the context associated with the command-queue, src_buffer and
dst_buffer are not the same or if the context associated with the command-queue and events in events are

not the same.

 CL_INVALID_MEM_OBJECT if src_buffer and dst_buffer are not valid buffer objects.

 CL_INVALID_VALUE if (src_offset, region) or (dst_offset, region) require accessing elements outside

the src_buffer and dst_buffer buffer objects respectively.

 CL_INVALID_EVENT_WAIT_LIST if event objects in events are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset specified
when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN

value for device associated with queue.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if dst_buffer is a sub-buffer object and offset specified

when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN

value for device associated with queue.

 CL_MEM_COPY_OVERLAP if src_buffer and dst_buffer are the same buffer object and the source
and destination regions overlap.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with src_buffer or dst_buffer.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

57

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The method

 template<typename PatternType>

 cl_int cl::CommandQueue::enqueueFillBuffer(const Buffer& buffer,

 PatternType pattern,

 ::size_t offset,

 ::size_t size,

 const VECTOR_CLASS<Event>* events = NULL,

 Event* event = NULL) const

enqueues a command to fill a buffer object with a pattern of a given size.

PatternType must be an OpenCL data type.

buffer specifies the buffer to be filled.

pattern specifies the pattern.

offset specifies the offset into the buffer where filling begins.

size specifies the size of the pattern.

events specifies events that need to complete before this particular command can be executed. If events is

NULL or of length zero, then this particular command does not wait on any event to complete. If events is not

NULL and a nonzero length, the list of events pointed to by events must be valid. The events specified in events

act as synchronization points. The context associated with events in events and the command-queue must be the

same.

event returns an event object that identifies this particular copy command and can be used to query or queue a

wait for this particular command to complete. event can be NULL, in which case it will not be possible for the

application to query the status of this command or queue a wait for this command to complete.

cl::CommandQueue::enqueueFillBuffer returns CL_SUCCESS on success.

The methods

cl_int cl::CommandQueue::enqueueReadImage(

 const Image& image,

cl_bool blocking_read,

const size_t<3>& origin,

const size_t<3>& region,

::size_t row_pitch,

::size_t slice_pitch,

void * ptr,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

58

and

cl_int cl::CommandQueue::enqueueWriteImage(

 const Image& image,

cl_bool blocking_write,

const size_t<3>& origin,

const size_t<3>& region,

::size_t row_pitch,

::size_t slice_pitch,

const void * ptr,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueues commands to read from a 2D or 3D image object to host memory or write to a 2D or 3D image object

from host memory.

image refers to a valid 2D or 3D image object.

blocking_read and blocking_write indicate if the read and write operations are blocking or nonblocking.

If blocking_read is CL_TRUE (i.e., the read command is blocking),

cl::CommandQueue::enqueueReadImage does not return until the buffer data has been read and copied into

memory pointed to by ptr.

If blocking_read is CL_FALSE (i.e., the read command is non-blocking),

cl::CommandQueue::enqueueReadImage queues a non-blocking read command and returns. The contents of

the buffer to which ptr points cannot be used until the read command has completed. The event argument

returns an event object that can be used to query the execution status of the read command. When the read

command has completed, the contents of the buffer that ptr points to can be used by the application.

If blocking_write is CL_TRUE, the OpenCL implementation copies the data referred to by ptr and enqueues the

write command in the command-queue. The memory pointed to by ptr can be reused by the application after the

cl::CommandQueue::enqueueWriteImage call returns.

If blocking_write is CL_FALSE, the OpenCL implementation will use ptr to perform a nonblocking write. As

the write is non-blocking the implementation can return immediately. The memory pointed to by ptr cannot be

reused by the application after the call returns. The event argument returns an event object which can be used to

query the execution status of the write command. When the write command has completed, the memory pointed

to by ptr can then be reused by the application.

origin defines the (x, y, z) offset in pixels in the image from where to read or write. If image is a

2D image object, the z value given by origin[2] must be 0.

region defines the (width, height, depth) in pixels of the 2D or 3D rectangle being read or written. If image is a

2D image object, the depth value given by region[2] must be 1.

row_pitch in cl::CommandQueue::enqueueReadImage and input_row_pitch in

cl::CommandQueue::enqueueWriteImage is the length of each row in bytes. This value must be greater than

or equal to the element size in bytes * width. If row_pitch (or input_row_pitch) is set to 0, the appropriate row

pitch is calculated based on the size of each element in bytes multiplied by width.

59

slice_pitch in cl::CommandQueue::enqueueReadImage and input_slice_pitch in

cl::CommandQueue::enqueueWriteImage is the size in bytes of the 2D slice of the 3D region of a 3D image

being read or written respectively. This must be 0 if image is a 2D image. This value must be greater than or

equal to row_pitch * height. If slice_pitch (or input_slice_pitch) is set to 0, the appropriate slice pitch is

calculated based on the row_pitch * height.

ptr is the pointer to a buffer in host memory where image data is to be read from or to be written

to.

events specifies events that need to complete before this particular command can be executed. If events is

NULL or of length zero, then this particular command does not wait on any event to complete. If events is not

NULL and of nonzero length, the list of events pointed to by events must be valid. The events specified in

events act as synchronization points. The context associated with events in events and the command-queue must

be the same.

event returns an event object that identifies this particular copy command and can be used to query or queue a

wait for this particular command to complete. event can be NULL, in which case it will not be possible for the

application to query the status of this command or queue a wait for this command to complete.

cl::CommandQueue::enqueueReadImage and cl::CommandQueue::enqueueWriteImage return

CL_SUCCESS on success. Otherwise, it returns one of the following errors:

 CL_INVALID_CONTEXT if the context associated with the command-queue and image are not the
same or if the context associated with the command-queue and events in events are not the same.

 CL_INVALID_MEM_OBJECT if image is not a valid image object.

 CL_INVALID_VALUE if the region being read or written specified by origin and region is out of

bounds or if ptr is a NULL value.

 CL_INVALID_VALUE if image is a 2D image object and origin[2] is not equal to 0 or region[2] is not
equal to 1 or slice_pitch is not equal to 0.

 CL_INVALID_EVENT_WAIT_LIST if event objects in events are not valid events.

 CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row

and/or slice pitch) for image are not supported by device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with image.

 CL_INVALID_OPERATION if the device associated with the command-queue does not support
images (i.e., CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The method

cl_int cl::CommandQueue::enqueueCopyImage(

 const Image& src_image,

const Image& dst_image,

const size_t <3>& src_origin,

const size_t <3>& dst_origin,

const size_t<3>& region,

60

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueues a command to copy image objects.

src_image and dst_image can be 2D or 3D image objects allowing us to perform the following actions:

 Copy a 2D image object to a 2D image object.

 Copy a 2D image object to a 2D slice of a 3D image object.

 Copy a 2D slice of a 3D image object to a 2D image object.

 Copy a 3D image object to a 3D image object.

The OpenCL context associated with command-queue, src_image and dst_image must be the same.

src_origin defines the starting (x, y, z) location in pixels in src_image from where to start the data copy. If

src_image is a 2D image object, the z value given by src_origin[2] must be 0.

dst_origin defines the starting (x, y, z) location in pixels in dst_image from where to start the data copy. If

dst_image is a 2D image object, the z value given by dst_origin[2] must be 0

region defines the (width, height, depth) in pixels of the 2D or 3D rectangle to copy. If src_image or dst_image

is a 2D image object, the depth value given by region[2] must be 1.

events specifies events that need to complete before this particular command can be executed. If events is

NULL or of length zero, then this particular command does not wait on any event to complete. If events is not

NULL and a nonzero length, the list of events pointed to by events must be valid. The events specified in events

act as synchronization points. The context associated with events in events and the command-queue must be the

same.

event returns an event object that identifies this particular copy command and can be used to query or queue a

wait for this particular command to complete. event can be NULL, in which case it will not be possible for the

application to query the status of this command or queue a

wait for this command to complete.

It is currently a requirement that the src_image and dst_image image memory objects for

cl::CommandQueue::enqueueCopyImage must have the exact same image format (i.e., the cl_image_format

descriptor specified when src_image and dst_image are created must match).

cl::CommandQueue::enqueueCopyImage returns CL_SUCCESS on success. Otherwise, it returns one of the

following errors:

 CL_INVALID_CONTEXT if the context associated with the command-queue, src_image and
dst_image are not the same or if the context associated with the command-queue and events in events

are not the same.

 CL_INVALID_MEM_OBJECT if src_image and dst_image are not valid image objects.

 CL_IMAGE_FORMAT_MISMATCH if src_image and dst_image do not use the same image format.

 CL_INVALID_VALUE if the 2D or 3D rectangular region specified by src_origin and src_origin +
region refers to a region outside src_image, or if the 2D or 3D rectangular region specified by dst_origin

and dst_origin + region refers to a region outside dst_image.

 CL_INVALID_VALUE if src_image is a 2D image object and src_origin[2] is not equal to 0 or
region[2] is not equal to 1.

61

 CL_INVALID_VALUE if dst_image is a 2D image object and dst_origin[2] is not equal to 0 or
region[2] is not equal to 1.

 CL_INVALID_EVENT_WAIT_LIST if event objects in events are not valid events.

 CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row
and/or slice pitch) for src_image are not supported by device associated with queue.

 CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row
and/or slice pitch) for dst_image are not supported by device associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with src_image or dst_image.

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The method

 cl_int cl::CommandQueue::enqueueFillImage(const Image& image,

 cl_float4 fillColor,

 const size_t<3>& origin,

 const size_t<3>& region,

 const VECTOR_CLASS<Event> * events = NULL,

 Event * event = NULL)

enqueues a command to fill an image object with a given fill color.

image is a valid image object.

fill_color is the four component RGBA fill color.

origin defines the (x, y, z) offset in pixels in the image to fill. If image is a 2D image object, the z value given

by origin[2] must be 0.

region defines the (width, height, depth) in pixels of the 2D or 3D rectangle to fill. If image is a 2D image

object, the depth value given by region[2] must be 1.

events specifies events that need to complete before this particular command can be executed. If events is

NULL or of length zero, then this particular command does not wait on any event to complete. If events is not

NULL and a nonzero length, the list of events pointed to by events must be valid. The events specified in events

act as synchronization points. The context associated with events in events and the command-queue must be the

same.

event returns an event object that identifies this particular copy command and can be used to query or queue a

wait for this particular command to complete. event can be NULL, in which case it will not be possible for the

application to query the status of this command or queue a

wait for this command to complete.

cl::CommandQueue::enqueueFillImage returns CL_SUCCESS on success.

The method

62

cl_int cl::CommandQueue::enqueueCopyImageToBuffer(

const Image& src_image,

const Buffer& dst_buffer,

const size_t <3>& src_origin,

const size_t<3>& region,

const ::size_t dst_offset,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueues a command to copy an image object to a buffer object. The OpenCL context associated with the

command-queue, src_image and dst_buffer must be the same.

src_image is a valid image object.

dst_buffer is a valid buffer object.

src_origin defines the (x, y, z) offset in pixels in the image from where to copy. If src_image is a

2D image object, the z value given by src_origin[2] must be 0.

region defines the (width, height, depth) in pixels of the 2D or 3D rectangle to copy. If src_image is a 2D

image object, the depth value given by region[2] must be 1.

dst_offset refers to the offset where to begin copying data into dst_buffer. The size in bytes of the region to be

copied referred to as dst_cb is computed as width * height * depth * bytes/image element if src_image is a 3D

image object and is computed as width * height * bytes/image element if src_image is a 2D image object.

events specifies events that need to complete before this particular command can be executed. If events is

NULL or of length zero, then this particular command does not wait on any event to complete. If events is not

NULL and a nonzero length, the list of events pointed to by events must be valid. The events specified in events

act as synchronization points. The context associated with events in events and the command-queue must be the

same.

event returns an event object that identifies this particular copy command and can be used to

query or queue a wait for this particular command to complete. event can be NULL, in which case it will not be

possible for the application to query the status of this command or queue a wait for this command to complete.

cl::CommandQueue::enqueueCopyImageToBuffer returns CL_SUCCESS on success. Otherwise, it returns

one of the following errors:

 CL_INVALID_CONTEXT if the context associated with the command-queue, src_image and
dst_buffer are not the same or if the context associated with the command-queue and events in events are

not the same.

 CL_INVALID_MEM_OBJECT if src_image is not a valid image object or dst_buffer is not a valid
buffer object.

 CL_INVALID_VALUE if the 2D or 3D rectangular region specified by src_origin and src_origin +

region refers to a region outside src_image, or if the region specified by dst_offset and dst_offset +

dst_cb to a region outside dst_buffer.

 CL_INVALID_VALUE if src_image is a 2D image object and src_origin[2] is not equal to 0 or
region[2] is not equal to 1.

63

 CL_INVALID_EVENT_WAIT_LIST if event objects in events are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if dst_buffer is a sub-buffer object and offset specified

when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN

value for device associated with queue. CL_INVALID_IMAGE_SIZE if image dimensions (image

width, height, specified or compute row and/or slice pitch) for src_image are not supported by device

associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with src_image or dst_buffer.

 CL_INVALID_OPERATION if the device associated with the command-queue does not support
images (i.e., CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

The method

cl_int cl::CommandQueue::enqueueCopyBufferToImage(

 const Buffer& src_buffer,

const Image& dst_image,

const ::size_t src_offset,

const size_t <3>& dst_origin,

const size_t<3>& region,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueues a command to copy a buffer object to an image object. The OpenCL context associated with the

command-queue, src_buffer and dst_image must be the same.

src_buffer is a valid buffer object.

dst_image is a valid image object.

src_offset refers to the offset where to begin copying data from src_buffer.

dst_origin refers to the (x, y, z) offset in pixels where to begin copying data to dst_image. If

dst_image is a 2D image object, the z value given by dst_origin[2] must be 0.

region defines the (width, height, depth) in pixels of the 2D or 3D rectangle to copy. If dst_image is a 2D image

object, the depth value given by region[2] must be 1. The size in bytes of the region to be copied from

src_buffer referred to as src_cb is computed as width * height * depth * bytes/image element if dst_image is a

3D image object and is computed as width * height * bytes/image element if dst_image is a 2D image object.

events specifies events that need to complete before this particular command can be executed. If events is

NULL or of length zero, then this particular command does not wait on any event to complete. If events is not

NULL and a nonzero length, the list of events pointed to by events must be valid. The events specified in events

act as synchronization points. The context associated with events in events and the command-queue must be the

same.

event returns an event object that identifies this particular copy command and can be used to

64

query or queue a wait for this particular command to complete. event can be NULL, in which case it will not be

possible for the application to query the status of this command or queue a wait for this command to complete.

cl::CommandQueue::enqueueCopyBufferToImage returns CL_SUCCESS on success. Otherwise, it returns

one of the following errors:

 CL_INVALID_CONTEXT if the context associated with the command-queue, src_buffer and
dst_image are not the same or if the context associated with the command-queue and events in events

are not the same.

 CL_INVALID_MEM_OBJECT if src_buffer is not a valid buffer object or dst_image is not a valid

image object.

 CL_INVALID_VALUE if the 2D or 3D rectangular region specified by dst_origin and dst_origin +
region refer to a region outside dst_image, or if the region specified by src_offset and src_offset + src_cb

refer to a region outside src_buffer.

 CL_INVALID_EVENT_WAIT_LIST if event objects in events are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset specified
when the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN

value for device associated with queue. CL_INVALID_IMAGE_SIZE if image dimensions (image

width, height, specified or compute row and/or slice pitch) for dst_image are not supported by device

associated with queue.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store

associated with src_buffer or dst_image.

 CL_INVALID_OPERATION if the device associated with the command-queue does not support
images (i.e., CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

The method

void * cl::CommandQueue::enqueueMapBuffer(

const Buffer& buffer,

cl_bool blocking_map,

cl_map_flags flags,

::size_t offset,

::size_t size,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL,

cl_int * err = NULL)

enqueues a command to map a region of the buffer object given by buffer into the host address space and

returns a pointer to this mapped region.

blocking_map indicates if the map operation is blocking or non-blocking.

If blocking_map is CL_TRUE, cl::CommandQueue::enqueueMapBuffer does not return until the specified

region in buffer can be mapped.

65

If blocking_map is CL_FALSE (i.e., the map operation is non-blocking), the pointer to the mapped region

returned by cl::CommandQueue::enqueueMapBuffer cannot be used until the map command has completed.

The event argument returns an event object that can be used to query the execution status of the map command.

When the map command is completed, the application can access the contents of the mapped region using the

pointer returned by cl::CommandQueue::enqueueMapBuffer.

map_flags is a bit-field and can be set to CL_MAP_READ to indicate that the region specified by (offset, size)

in the buffer object is being mapped for reading, and/or CL_MAP_WRITE to indicate that the region specified

by (offset, size) in the buffer object is being mapped for writing.

buffer is a valid buffer object. The OpenCL context associated with command_queue and buffer must be the

same.

offset and size are the offset in bytes and the size of the region in the buffer object that is being mapped.

events specifies events that need to complete before this particular command can be executed. If events is

NULL or of length zero, then this particular command does not wait on any event to complete. If events is not

NULL and a nonzero length, the list of events pointed to by events must be valid. The events specified in events

act as synchronization points. The context associated with events in events and the command-queue must be the

same.

event returns an event object that identifies this particular copy command and can be used to

query or queue a wait for this particular command to complete. event can be NULL, in which case it will not be

possible for the application to query the status of this command or queue a wait for this command to complete.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::CommandQueue::enqueueMapBuffer returns a pointer to the mapped region and sets err to

CL_SUCCESS on success.

A NULL pointer is returned otherwise with one of the following error values returned in err:

 CL_INVALID_CONTEXT if context associated with the command queue and buffer are not the same or
if the context associated with the command queue and events in events are not the same.

 CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

 CL_INVALID_VALUE if region being mapped given by (offset, size) is out of bounds or if values

specified in map_flags are not valid.

 CL_INVALID_EVENT_WAIT_LIST if event objects in events are not valid events.

 CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when
the sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for

device associated with queue.

 CL_MAP_FAILURE if there is a failure to map the requested region into the host address space. This

error cannot occur for buffer objects created with CL_MEM_USE_HOST_PTR or

CL_MEM_ALLOC_HOST_PTR.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with buffer.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

66

The pointer returned maps a region starting at offset and is at least size bytes in size. The result of a memory

access outside this region is undefined.

The method

void * cl::CommandQueue::enqueueMapImage(

const Image& image,

cl_bool blocking_map,

cl_map_flags map_flags,

::size_t<3>& origin,

::size_t<3>& region,

::size_t * row_pitch,

::size_t * slice_pitch,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL,

cl_int * err = NULL)

enqueues a command to map a region in the image object given by image into the host address space and

returns a pointer to this mapped region.

image is a valid image object. The OpenCL context associated with the command queue and image must be the

same.

blocking_map indicates if the map operation is blocking or non-blocking.

If blocking_map is CL_TRUE, cl::CommandQueue::enqueueMapImage does not return until the specified

region in image is mapped.

If blocking_map is CL_FALSE (i.e., the map operation is non-blocking), the pointer to the mapped region

returned by cl::CommandQueue::enqueueMapImage cannot be used until the map command has completed.

The event argument returns an event object that can be used to query the execution status of the map command.

When the map command is completed, the application can access the contents of the mapped region using the

pointer returned by cl::CommandQueue::enqueueMapImage.

map_flags is a bit-field and can be set to CL_MAP_READ to indicate that the region specified by (origin,

region) in the image object is being mapped for reading, and/or CL_MAP_WRITE to indicate that the region

specified by (origin, region) in the image object is being mapped for writing.

origin and region define the (x, y, z) offset in pixels and (width, height, depth) in pixels of the 2D or 3D

rectangle region that is to be mapped. If image is a 2D image object, the z value given by origin[2] must be 0

and the depth value given by region[2] must be 1.

row_pitch returns the scan-line pitch in bytes for the mapped region. This must be a non-NULL value.

slice_pitch returns the size in bytes of each 2D slice for the mapped region. For a 2D image, zero is returned if

this argument is not NULL. For a 3D image, slice_pitch must be a non-NULL value.

events specifies events that need to complete before this particular command can be executed. If events is

NULL or of length zero, then this particular command does not wait on any event to complete. If events is not

67

NULL and a nonzero length, the list of events pointed to by events must be valid. The events specified in events

act as synchronization points. The context associated with events in events and the command-queue must be the

same.

event returns an event object that identifies this particular copy command and can be used to

query or queue a wait for this particular command to complete. event can be NULL, in which case it will not be

possible for the application to query the status of this command or queue a wait for this command to complete.

err returns an appropriate error code. If err is NULL, no error code is returned.

cl::CommandQueue::enqueueMapImage returns a pointer to the mapped region and sets err to

CL_SUCCESS on success. It returns NULL otherwise, with one of the following error values returned in err:

 CL_INVALID_CONTEXT if context associated with the command queue and image are not the same
or if context associated with the command queue and events in events are not the same.

 CL_INVALID_MEM_OBJECT if image is not a valid image object.

 CL_INVALID_VALUE if region being mapped given by (origin, origin+region) is out of bounds or if

values specified in map_flags are not valid.

 CL_INVALID_VALUE if image is a 2D image object and origin[2] is not equal to 0 or region[2] is not
equal to 1.

 CL_INVALID_VALUE if row_pitch is NULL.

 CL_INVALID_VALUE if image is a 3D image object and slice_pitch is NULL.

 CL_INVALID_EVENT_WAIT_LIST if event objects in events are not valid events.

 CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row
and/or slice pitch) for image are not supported by device associated with queue.

 CL_MAP_FAILURE if there is a failure to map the requested region into the host address space. This
error cannot occur for image objects created with CL_MEM_USE_HOST_PTR or

CL_MEM_ALLOC_HOST_PTR.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store

associated with buffer.

 CL_INVALID_OPERATION if the device associated with the command queue does not support images
(i.e., CL_DEVICE_IMAGE_SUPPORT specified in table 4.3 is CL_FALSE).

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The pointer returned maps a 2D or 3D region starting at origin and is at least (row_pitch * region[1] +

region[0]) pixels in size for a 2D image, and is at least (slice_pitch * region[2] +row_pitch * region[1] +

region[0]) pixels in size for a 3D image. The result of a memory access outside this region is undefined.

If the image object is created with CL_MEM_USE_HOST_PTR set in mem_flags, the following will be true:

 The host_ptr specified in cl::Image{2D|3D} is guaranteed to contain the latest bits in the region being

mapped when the cl::CommandQueue::enqueueMapImage command has completed.

 The pointer value returned by cl::CommandQueue::enqueueMapImage is derived from the host_ptr

specified when the image object is created.

68

Mapped image objects are unmapped using cl::CommandQueue::enqueueUnmapMemObject. This is

described in the following text.

cl_int cl::CommandQueue::enqueueUnmapMemObject(

const Memory& memory,

void * mapped_ptr,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueues a command to unmap a previously mapped region of a memory object. Reads or writes from the host

using the pointer returned by cl::CommandQueue::enqueueMapBuffer, or

cl::CommandQueue::enqueueMapImage are considered to be complete.

memobj is a valid memory object. The OpenCL context associated with command_queue and memobj must be

the same.

mapped_ptr is the host address returned by a previous call to cl::CommandQueue::enqueueMapBuffer, or

cl::CommandQueue::enqueueMapImage for memobj.

events specifies events that need to complete before this particular command can be executed. If events is

NULL or of length zero, then this particular command does not wait on any event to complete. If events is not

NULL and a nonzero length, the list of events pointed to by events must be valid. The events specified in events

act as synchronization points. The context associated with events in events and the command-queue must be the

same.

event returns an event object that identifies this particular copy command and can be used to

query or queue a wait for this particular command to complete. event can be NULL, in which case it will not be

possible for the application to query the status of this command or queue a wait for this command to complete.

Cl::CommandQueue::enqueueBarrier can be used instead.

Cl::CommandQueue::enqueueUnmapMemObject returns CL_SUCCESS on success. Otherwise it returns

one of the following errors:

 CL_INVALID_MEM_OBJECT if memobj is not a valid memory object.

 CL_INVALID_VALUE if mapped_ptr is not a valid pointer returned by

cl::CommandQueue::enqueueMapBuffer, or clCommandQueue::enqueueMapImage for memobj.

 CL_INVALID_EVENT_WAIT_LIST if event objects in events are not valid events.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

 CL_INVALID_CONTEXT if context associated with the command queue and memobj are not the same

or if the context associated with the command queue and events in events are not the same.

cl::CommandQueue::enqueueMapBuffer, and cl::CommandQueue::enqueueMapImage increments the

mapped count of the memory object. The initial mapped count value of the memory object is zero. Multiple

calls to cl::CommandQueue::enqueueMapBuffer, or cl::CommandQueue::enqueueMapImage on the same

69

memory object will increment this mapped count by appropriate number of calls.

cl::CommandQueue::enqueueUnmapMemObject decrements the mapped count of the memory object.

cl::CommandQueue::enqueueMapBuffer, and cl::CommandQueue::enqueueMapImage act as

synchronization points for a region of the buffer object being mapped.

The method

cl_int cl::CommandQueue::enqueueMarkerWithWaitList(

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueues a marker command that waits for completion of a list of events.

events specifies a list of events. If NULL or empty, the marker command waits for the completion of all

previously enqueued commands.

event returns an event object that identifies this command. It can be used to query or queue a wait for this

particular command to complete. event can be NULL, in which case it will not be possible for the application to

query the status of this command or queue a wait for this command to complete.

cl::CommandQueue::enqueueMarkerWithWaitList returns CL_SUCCESS on success.

The method

cl_int cl::CommandQueue::enqueueBarrierWithWaitList(

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueues a barrier command that waits for completion of a list of events.

events specifies a list of events. If NULL or empty, the barrier command waits for the completion of all

previously enqueued commands.

event returns an event object that identifies this command. It can be used to query or queue a wait for this

particular command to complete. event can be NULL, in which case it will not be possible for the application to

query the status of this command or queue a wait for this command to complete.

cl::CommandQueue::enqueueBarrierWithWaitList returns CL_SUCCESS on success.

The method

cl_int cl::CommandQueue::enqueueMigrateMemObjects(

 const VECTOR_CLASS<Memory> &memObjects,

 cl_mem_migration_flags flags,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueues a command indicating with which device a set a memory objects should be associated.

memObjects specifies a set of memory objects.

70

flags specifies migration flags, as in table 5.10 of the OpenCl Specification Version 1.2. It must be nonempty.

events specifies a list of events on which the command waits. If NULL, the command does not wait.

event returns an event object that identifies this command. It can be used to query or queue a wait for this

particular command to complete. event can be NULL, in which case it will not be possible for the application to

query the status of this command or queue a wait for this command to complete.

cl::CommandQueue::enqueueMigrateMemObjects returns CL_SUCCESS on success. Otherwise, it returns

the error status from the underlying clEnqueueMigrateMemObjects call.

The method

cl_int cl::CommandQueue::enqueueNDRangeKernel(

const Kernel& kernel,

const NDRange& offset,

const NDRange& global,

const NDRange& local,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueues a command to execute a kernel on a device.

kernel is a valid kernel object. The OpenCL context associated with kernel and the command queue must be the

same.

offset can be used to specify an array of work_dim unsigned values that describe the offset used to calculate the

global ID of a work-item. If offset is cl::NULLRange, the global IDs start at offset (0, 0, … 0).

global points to an array of work_dim unsigned values that describe the number of global work-items in

work_dim dimensions that will execute the kernel function. The total number of global work-items is computed

as global [0] * … * globa [work_dim – 1].

local points to an array of work_dim unsigned values that describe the number of work-items that make up a

work-group (also referred to as the size of the work-group) that will execute the kernel specified by kernel. The

total number of work-items in a work-group is computed as local[0] * … * local [work_dim – 1]. The total

number of work-items in the work-group must be less than or equal to the

CL_DEVICE_MAX_WORK_GROUP_SIZE value specified in table 4.3 and the number of work-items

specified in local [0], … local [work_dim – 1] must be less than or equal to the corresponding values specified

by CL_DEVICE_MAX_WORK_ITEM_SIZES[0], …. CL_DEVICE_MAX_WORK_ITEM_SIZES[work_dim

– 1]. The explicitly specified local determines how to break the global work-items specified by global into

appropriate work-group instances. If local is specified, the values specified in global [0], … global [work_dim -

1] must be evenly divisible by the corresponding values specified in local [0], … local [work_dim – 1].

The work-group size to be used for kernel can also be specified in the program source using the

__attribute__((reqd_work_group_size(X, Y, Z)))qualifier (refer to section 6.8.2). In this case the size of work

group specified by local must match the value specified by the reqd_work_group_size attribute qualifier.

71

local can also be a cl::NULLRange value in which case the OpenCL implementation will determine how to be

break the global work-items into appropriate work-group instances.

These work-group instances are executed in parallel across multiple compute units or concurrently on the same

compute unit.

Each work-item is uniquely identified by a global identifier. The global ID, which can be read inside the kernel,

is computed using the value given by global_work_size and global_work_offset. In addition, a work-item is

also identified within a work-group by a unique local ID. The local ID, which can also be read by the kernel, is

computed using the value given by local_work_size. The starting local ID is always (0, 0, … 0).

events specifies events that need to complete before this particular command can be executed. If events is

NULL or of length zero, then this particular command does not wait on any event to complete. If events is not

NULL and a nonzero length, the list of events pointed to by events must be valid. The events specified in events

act as synchronization points. The context associated with events in events and the command queue must be the

same.

event returns an event object that identifies this particular copy command and can be used to query or queue a

wait for this particular command to complete. event can be NULL, in which case it will not be possible for the

application to query the status of this command or queue a wait for this command to complete.

cl::CommandQueue::enqueueBarrier can be used instead.

cl::CommandQueue::enqueueNDRangeKernel returns CL_SUCCESS if the kernel execution was

successfully queued. Otherwise, it returns one of the following errors:

 CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built program executable

available for device associated with the command queue.

 CL_INVALID_KERNEL if kernel is not a valid kernel object.

 CL_INVALID_CONTEXT if context associated with the command queue and kernel are not the same

or if the context associated with the command queue and events in events are not the same.

 CL_INVALID_KERNEL_ARGS if the kernel argument values have not been specified.

 CL_INVALID_GLOBAL_WORK_SIZE if global is cl::NULLRange, or if any of the values specified

in global [0], … global [work_dim – 1] are 0 or exceed the range given by the sizeof(size_t) for the

device on which the kernel execution is enqueued.

 CL_INVALID_GLOBAL_OFFSET if the value specified in global + the corresponding values in global

for any dimensions is greater than the sizeof(size t) for the device on which the kernel execution is

enqueued.

 CL_INVALID_WORK_GROUP_SIZE if local is specified and number of work-items specified by

global is not evenly divisible by size of work-group given by local or does not match the work-group

size specified for kernel using the __attribute__((reqd_work_group_size(X, Y, Z))) qualifier in program

source.

72

 CL_INVALID_WORK_GROUP_SIZE if local is specified and the total number of work-items in the

work-group computed as local [0] * … local [work_dim – 1] is greater than the value specified by

CL_DEVICE_MAX_WORK_GROUP_SIZE in table 4.3.

 CL_INVALID_WORK_GROUP_SIZE if local is NULL and the

__attribute__((reqd_work_group_size(X, Y, Z))) qualifier declares the work-group size for kernel in the

program source.

 CL_INVALID_WORK_ITEM_SIZE if the number of work-items specified in any of local [0], … local

[work_dim – 1] is greater than the corresponding values specified by

CL_DEVICE_MAX_WORK_ITEM_SIZES[0], ….

CL_DEVICE_MAX_WORK_ITEM_SIZES[work_dim – 1].

 CL_MISALIGNED_SUB_BUFFER_OFFSET if a sub-buffer object is specified as the value for an

argument that is a buffer object and the offset specified when the sub-buffer object is created is not

aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_INVALID_IMAGE_SIZE if an image object is specified as an argument value and the image

dimensions (image width, height, specified or compute row and/or slice pitch) are not supported by

device associated with queue.

 CL_OUT_OF_RESOURCES if there is a failure to queue the execution instance of kernel on the

command-queue because of insufficient resources needed to execute the kernel. For example, the

explicitly specified local causes a failure to execute the kernel because of insufficient resources such as

registers or local memory. Another example would be the number of read-only image args used in

kernel exceed the CL_DEVICE_MAX_READ_IMAGE_ARGS value for device or the number of write-

only image args used in kernel exceed the CL_DEVICE_MAX_WRITE_IMAGE_ARGS value for

device or the number of samplers used in kernel exceed CL_DEVICE_MAX_SAMPLERS for device.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store

associated with image or buffer objects specified as arguments to kernel.

 CL_INVALID_EVENT_WAIT_LIST if event objects in events are not valid events.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

The method

cl_int cl::CommandQueue::enqueueTask(

const Kernel& kernel,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueues a command to execute a kernel on a device. The kernel is executed using a single work-item.

73

kernel is a valid kernel object. The OpenCL context associated with kernel and command-queue must be the

same.

events specifies events that need to complete before this particular command can be executed. If events is

NULL or of length zero, then this particular command does not wait on any event to complete. If events is not

NULL and a nonzero length, the list of events pointed to by events must be valid. The events specified in events

act as synchronization points. The context associated with events in events and the command queue must be the

same.

event returns an event object that identifies this particular copy command and can be used to

query or queue a wait for this particular command to complete. event can be NULL, in which case it will not be

possible for the application to query the status of this command or queue a wait for this command to complete.

cl::CommandQueue::enqueueBarrier can be used instead.

cl::CommandQueue::enqueueTask is equivalent to calling cl::CommandQueue::enqueueNDRangeKernel

with work_dim = 1, global = NULLRange, global [0] set to 1 and local [0] set to 1.

Cl::CommandQueue::enqueueTask returns CL_SUCCESS if the kernel execution was successfully queued.

Otherwise, it returns one of the following errors:

 CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built program executable
available for device associated with the command queue.

 CL_INVALID_KERNEL if kernel is not a valid kernel object.

 CL_INVALID_CONTEXT if context associated with the command queue and kernel are not the same
or if the context associated with the command queue and events in events are not the same.

 CL_INVALID_KERNEL_ARGS if the kernel argument values have not been specified.

 CL_INVALID_WORK_GROUP_SIZE if a work-group size is specified for kernel using the

__attribute__((reqd_work_group_size(X, Y, Z))) qualifier in program source and is not (1, 1, 1).

 CL_MISALIGNED_SUB_BUFFER_OFFSET if a sub-buffer object is specified as the value for an
argument that is a buffer object and the offset specified when the sub-buffer object is created is not

aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue.

 CL_INVALID_IMAGE_SIZE if an image object is specified as an argument value and the image
dimensions (image width, height, specified or compute row and/or slice pitch) are not supported by

device associated with queue.

 CL_OUT_OF_RESOURCES if there is a failure to queue the execution instance of kernel on the
command-queue because of insufficient resources needed to execute the kernel.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store

associated with image or buffer objects specified as arguments to kernel.

 CL_INVALID_EVENT_WAIT_LIST if event objects in events are not valid events.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The method

cl_int cl::CommandQueue::enqueueNativeKernel(

void (*user_func) (void *),

std::pair<void*, ::size_t> args,

const VECTOR_CLASS<Memory> * mem_objects = NULL,

74

const VECTOR_CLASS<const void *> * mem_locs = NULL,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueues a command to execute a native C/C++ function not compiled using the OpenCL compiler.

A native user function can only be executed on a command queue created on a device that has

CL_EXEC_NATIVE_KERNEL capability set in CL_DEVICE_EXECUTION_CAPABILITIES as specified in

table 4.3.

user_func is a pointer to a host-callable user function.

args is tuple containing a pointer to the args list that user_func should be called with and the is the size in bytes

of the arggument list that args points to.

The data pointed to by args.fst and args.snd bytes in size is copied and a pointer to this copied region is passed

to user_func. The copy needs to be done because the memory objects (cl_mem values) that args may contain

need to be modified and replaced by appropriate pointers to global memory. When

cl::CommandQueue::enqueueNativeKernel returns, the memory region pointed to by args can be reused by

the application.

mem_objects is a list of valid buffer objects. The buffer object values specified in mem_objects are memory

objects (cl::Memory values) returned by cl::Buffer.

mem_loc is a vector of appropriate locations that args points to where memory objects (cl::Memory values) are

stored. Before the user function is executed, the memory object handles are replaced by pointers to global

memory.

events specifies events that need to complete before this particular command can be executed. If events is

NULL or of length zero, then this particular command does not wait on any event to complete. If events is not

NULL and a nonzero length, the list of events pointed to by events must be valid. The events specified in events

act as synchronization points. The context associated with events in events and the command queue must be the

same.

event returns an event object that identifies this particular copy command and can be used to

query or queue a wait for this particular command to complete. event can be NULL, in which case it will not be

possible for the application to query the status of this command or queue a wait for this command to complete.

cl::CommandQueue::enqueueBarrier can be used instead.

Cl::CommandQueue::enqueueNativeKernel returns CL_SUCCESS if the user function execution instance

was successfully queued. Otherwise, it returns one of the following errors:

 CL_INVALID_CONTEXT if context associated with the command queue and events in events are not
the same.

 CL_INVALID_VALUE if user_func is NULL.

 CL_INVALID_VALUE if args.fst is a NULL value and args.snd > 0, or if args.fst is a NULL value

and then length of mem_objects > 0.

 CL_INVALID_VALUE if args.fst is not NULL and args.snd is 0.

75

 CL_INVALID_VALUE if the length of mem_objects > 0 and mem_locs is NULL.

 CL_INVALID_VALUE if length of mem_objects is 0 and mem_locs is not NULL.

 CL_INVALID_OPERATION if device cannot execute the native kernel.

 CL_INVALID_MEM_OBJECT if one or more memory objects specified in mem_objects are not valid
or are not buffer objects.

 CL_OUT_OF_RESOURCES if there is a failure to queue the execution instance of kernel on the
command-queue because of insufficient resources needed to execute the kernel.

 CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store

associated with buffer objects specified as arguments to kernel.

 CL_INVALID_EVENT_WAIT_LIST if event objects in events are not valid events.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The method

cl_int cl::CommandQueue::enqueueMarker(Event * event = NULL)

enqueues a marker command to the command queue. The command returns an event which can be used to

queue a wait on this marker (i.e., to wait for all commands queued before the marker to complete).

cl::CommandQueue::enqueueMarker returns CL_SUCCESS if the function is successfully executed.

Otherwise, it returns one of the following errors:

 CL_INVALID_VALUE if event is a NULL value.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The method

cl_int cl::CommandQueue::enqueueWaitForEvents(

const VECTOR_CLASS<Event>& events)

enqueues a wait for a specific event or a list of events to complete before any future commands queued in the

command queue are executed. Each event in events must be a valid event object returned by a previous call to

cl::CommandQueue::enqueue*.

The events specified in events act as synchronization points. The context associated with events in events and

then command queue must be the same.

cl::CommandQueue::enqueueWaitForEvents returns CL_SUCCESS if the function was successfully

executed. Otherwise, it returns one of the following errors:

 CL_INVALID_CONTEXT if the context associated with command_queue and events in event_list are
not the same.

 CL_INVALID_VALUE if the length of events is 0.

 CL_INVALID_EVENT if event objects specified in events are not valid events.

 CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

76

The method

cl_int cl::CommandQueue::enqueueAcquireGLObjects(

 const VECTOR_CLASS<Memory>* mem_objects = NULL,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueues a command to acquire OpenCL memory objects created from OpenGL objects.

mem_objects is the list of OpenCL memory objects that correspond to OpenGL objects.

events specifies a list of events on which the command waits. If NULL or empty, the command waits for the

completion of all previously enqueued commands.

event returns an event object that identifies this command. It can be used to query or queue a wait for this

particular command to complete. event can be NULL, in which case it will not be possible for the application to

query the status of this command or queue a wait for this command to complete.

cl::CommandQueue::enqueueAcquireGLObjects returns CL_SUCCESS on success.

The method

cl_int cl::CommandQueue::enqueueReleaseGLObjects(

 const VECTOR_CLASS<Memory>* mem_objects = NULL,

const VECTOR_CLASS<Event> * events = NULL,

Event * event = NULL)

enqueues a command to release OpenCL memory objects created from OpenGL objects.

mem_objects is the list of OpenCL memory objects that correspond to OpenGL objects.

events specifies a list of events on which the command waits. If NULL, the command waits for the completion

of all previously enqueued commands.

event returns an event object that identifies this command. It can be used to query or queue a wait for this

particular command to complete. event can be NULL, in which case it will not be possible for the application to

query the status of this command or queue a wait for this command to complete.

cl::CommandQueue::enqueueReleaseGLObjects returns CL_SUCCESS on success.

The method

cl_int cl::CommandQueue::enqueueBarrier(void)

enqueues a barrier operation. The cl::CommandQueue::enqueueBarrier command ensures that all queued

commands in command_queue have finished execution before the next batch of commands can begin execution.

The cl::CommandQueue::enqueueBarrier command is a synchronization point.

77

cl::CommandQueue::enqueueBarrier returns CL_SUCCESS if the function was executed successfully. It

returns CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

The method

cl_int cl::CommandQueue::flush(void)

issues all previously queued OpenCL commands in the command queue to the device.

cl::CommandQueue::flush only guarantees that all queued commands to command queue get issued to the

appropriate device. There is no guarantee that they will be complete after cl::CommandQueue::flush returns.

cl::CommandQueue::flush returns CL_SUCCESS if the function call was executed successfully. Otherwise it

returns CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

The method

cl_int cl::CommandQueue::finish(void)

blocks until all previously queued OpenCL commands in the command queue are issued to the associated

device and have completed. cl::CommandQueue::finish does not return until all queued commands in then

command queue have been processed and completed. cl::CommandQueue::finish is also a synchronization

point.

cl::CommandQueue::finish returns CL_SUCCESS if the function call was executed successfully. Otherwise it

returns CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

implementation on the host.

4. Exceptions

The use of C++ exceptions can provide a structured approach to error handling for large applications. The C++

API provides the ability to use C++ exceptions to track and handle errors generated by the underlying OpenCL
C API. However, the use of C++ exceptions is not universal and their use should be optional. In the case that

exceptions are not used, the resulting application must compile and work without exception support.

By default, C++ exceptions are not enabled and the OpenCL error code is returned, or set, as per the underlying

C API. To enable the use of exceptions, the user must explicitly define preprocessor macro:

 __CL_ENABLE_EXCEPTIONS

 Once enabled, an error (i.e., a value other than CL_SUCCESS) originally reported via return value instead will

be reported by throwing an exception of class cl::Error. By default, the method cl::Error::what() returns a

const pointer to a string naming the particular C API call that reported the error (e.g., "clGetDeviceInfo”,

"clGetPlatformInfo", and so on).

78

To override the default behavior for cl::Error::what(), define the preprocessor macro:

 __CL_USER_OVERRIDE_ERROR_STRINGS

and provide string constants for each preprocessor macro defined in Table 11. Most macros apply to both

OpenCL 1.1 and OpenCL 1.2; these have a blank Version column in the table. Macros marked V1.2 in the

Version column are defined for OpenCL 1.2 only. Macros marked V1.1 in the Version column are defined for

OpenCL 1.1 only; the corresponding OpenCL APIs are deprecated, and the user must define

 __CL_USE_DEPRECATED_OPENCL_1_1_APIS

to use these V1.1 macros.

Preprocessor macro name Default value Version

__BUILD_PROGRAM_ERR “clBuildProgram”
__COMPILE_PROGRAM_ERR “clCompileProgram” V1.2

__COPY_ERR “clCopy”

__CREATE_BUFFER_ERR “clCreateBuffer”

__CREATE_COMMAND_QUEUE_ERR “clCreateCommandQueue”
__CREATE_CONTEXT_ERR “clCreateContext”

__CREATE_CONTEXT_FROM_TYPE_ERR “clCreateContextFromType”

__CREATE_GL_BUFFER_ERR “clCreateFromGLBuffer”

__CREATE_GL_RENDER_BUFFER_ERR “clCreateFromGLBuffer”

__CREATE_GL_TEXTURE_2D_ERR “clCreateFromGLTexture2D” V1.1

__CREATE_GL_TEXTURE_3D_ERR “clCreateFromGLTexture3D” V1.1

__CREATE_GL_TEXTURE_ERR “clCreateFromGLTexture” V1.2

__CREATE_IMAGE2D_ERR “clCreateImage2D” V1.1

__CREATE_IMAGE3D_ERR “clCreateImage3D” V1.1

__CREATE_IMAGE_ERR “clCreateImage” V1.2

__CREATE_KERNELS_IN_PROGRAM_ERR “clCreateKernelsInProgram”
__CREATE_KERNEL_ERR “clCreateKernel”
__CREATE_PROGRAM_WITH_BINARY_ERR “clCreateProgramWithBinary”
__CREATE_PROGRAM_WITH_BUILTIN_KERNELS_ERR “clCreateProgramWithBuiltinKernels” V1.2
__CREATE_PROGRAM_WITH_SOURCE_ERR “clCreateProgramWithSource”
__CREATE_SAMPLER_ERR “clCreateSampler”

__CREATE_SUBBUFFER_ERR “clCreateSubBuffer”

__CREATE_SUB_DEVICES_ERR “clCreateSubDevicesEXT” !V1.2

__CREATE_SUB_DEVICES_ERR “clCreateSubDevices” V1.2

__CREATE_USER_EVENT_ERR “clCreateUserEvent”
__ENQUEUE_ACQUIRE_GL_ERR “clEnqueueAcquireGLObjects”
__ENQUEUE_BARRIER_ERR “clEnqueueBarrier” V1.1
__ENQUEUE_COPY_BUFFER_ERR “clEnqueueCopyBuffer”
__ENQUEUE_COPY_BUFFER_RECT_ERR “clEnqueueCopyBufferRect”
__ENQUEUE_COPY_BUFFER_TO_IMAGE_ERR “clEnqueueCopyBufferToImage”
__ENQUEUE_COPY_IMAGE_ERR “clEnqueueCopyImage”
__ENQUEUE_COPY_IMAGE_TO_BUFFER_ERR “clEnqueueCopyImageToBuffer”
__ENQUEUE_FILL_BUFFER_ERR “clEnqueueFillBuffer”
__ENQUEUE_FILL_IMAGE_ERR “clEnqueueFillImage”

79

__ENQUEUE_MAP_BUFFER_ERR “clEnqueueMapBuffer”
__ENQUEUE_MAP_IMAGE_ERR “clEnqueueMapImage”
__ENQUEUE_MARKER_ERR “clEnqueueMarker” V1.1
__ENQUEUE_MIGRATE_MEM_OBJECTS_ERR “clEnqueueMigrateMemObjects” V1.2
__ENQUEUE_NATIVE_KERNEL “clEnqueueNativeKernel”
__ENQUEUE_NDRANGE_KERNEL_ERR “clEnqueueNDRangeKernel”
__ENQUEUE_READ_BUFFER_ERR “clEnqueueReadBuffer”
__ENQUEUE_READ_BUFFER_RECT_ERR “clEnqueueReadBufferRect”
__ENQUEUE_READ_IMAGE_ERR “clEnqueueReadImage”
__ENQUEUE_RELEASE_GL_ERR “clEnqueueReleaseGLObjects”
__ENQUEUE_TASK_ERR “clEnqueueTask”
__ENQUEUE_UNMAP_MEM_OBJECT_ERR “clEnqueueUnmapMemObject”
__ENQUEUE_WAIT_FOR_EVENTS_ERR “clEnqueueWaitForEvents” V1.1
__ENQUEUE_WRITE_BUFFER_ERR “clEnqueueWriteBuffer”
__ENQUEUE_WRITE_BUFFER_RECT_ERR “clEnqueueWriteBufferRect”
__ENQUEUE_WRITE_IMAGE_ERR “clEnqueueWriteImage”
__FINISH_ERR “clFinish”
__FLUSH_ERR “clFlush”
__GET_COMMAND_QUEUE_INFO_ERR “clGetCommandQueueInfo”

__GET_CONTEXT_INFO_ERR “clGetContextInfo”

__GET_DEVICE_IDS_ERR “clGetDeviceIds”

__GET_DEVICE_INFO_ERR “clGetDeviceInfo”

__GET_EVENT_INFO_ERR “clGetEventInfo”

__GET_EVENT_PROFILE_INFO_ERR “clGetEventProfileInfo”

__GET_GL_OBJECT_INFO_ERR “clGetGLObjectInfo”
__GET_IMAGE_INFO_ERR “clGetImageInfo”

__GET_KERNEL_ARG_INFO_ERR “clGetKernelArgInfo” V1.2

__GET_KERNEL_INFO_ERR “clGetKernelInfo”

__GET_KERNEL_WORK_GROUP_INFO_ERR “clGetKernelWorkGroupInfo”

__GET_MEM_OBJECT_INFO_ERR “clGetMemObjectInfo”

__GET_PLATFORM_IDS_ERR “clGetPlatformIDs”

__GET_PLATFORM_INFO_ERR “clGetPlatformInfo”

__GET_PROGRAM_BUILD_INFO_ERR “clGetProgramBuildInfo”

__GET_PROGRAM_INFO_ERR “clGetProgramInfo”

__GET_SAMPLER_INFO_ERR “clGetSampleInfo”

__GET_SUPPORTED_IMAGE_FORMATS_ERR “clGetSupportedImageFormats”

__IMAGE_DIMENSION_ERR “Incorrect image dimensions” V1.2

__RELEASE_ERR “Release Object”

__RETAIN_ERR “Retain Object”

__SET_COMMAND_QUEUE_PROPERTY_ERR “clSetCommandQueueProperty”
__SET_EVENT_CALLBACK_ERR “clSetEventCallback”
__SET_KERNEL_ARGS_ERR “clSetKernelArgs”
__SET_MEM_OBJECT_DESTRUCTOR_CALLBACK_ERR “clSetMemObjectDestructorCallback”

__SET_PRINTF_CALLBACK_ERR “clSetPrintfCallback” V1.2
__SET_USER_EVENT_STATUS_ERR “clSetUserEventStatus”
__UNLOAD_COMPILER_ERR “clUnloadCompiler” V1.1
__VECTOR_CAPACITY_ERR “Vector capacity error”
__WAIT_FOR_EVENTS_ERR “clWaitForEvents”

Table 13: Preprocessor error macros and their defaults.

80

5. Using the C++ API with the Standard Template Library

The C++ Standard Template Library is an excellent resource for quick access to many useful algorithms and

containers, but it is often not used due to compatibility issues across different toolchains and operating systems,

among other reasons. The OpenCL C++ wrapper API uses vectors and strings in a number of places. By

default, it uses Standard Template Library vector and string classes std::vector and std::string. However, it

also gives the developer the ability to not use these.

The C++ wrapper API provides replacements cl::vector for std::vector and cl::string for std::string. It also

allows developers to use their own implementations instead.

By default, to avoid issues with backward compatibility, the C++ wrapper uses both std::vector and

std::string. Either can be overridden, with cl::vector and cl::type; however, the developer should be aware

that these types are deprecated. For vectors, the developer can select an alternative version by defining the

preprocessor macro:

__NO_STD_VECTOR

In this case, the following vector type is defined:

template cl::vector<typename T,

 unsigned int N = __MAX_DEFAULT_VECTOR_SIZE>

cl::vector shares the same interface as std::vector, but it has a statically defined space requirement, by default

10 elements. The developer can manually override this allocation by defining the preprocessor macro:

__MAX_DEFAULT_VECTOR_SIZE N

where N is the number of vector elements to use when allocating values of type cl::vector.

By defining the preprocessor macro:

 __USE_DEV_VECTOR

neither std::vector nor cl::vector classes will be used. Instead, the user must provide the preprocessor

definition:

VECTOR_CLASS typeName

where typeName corresponds to the user’s vector class
4
, with an implementation that matches the std::vector

interface.

For strings, if the preprocessor macro:

4
 Few C++ compilers currently support typedef templates and thus the vector type must be given

by its name only through the preprocessor macro VECTOR_CLASS.

81

__NO_STD_STRING

is defined, then the string type cl::string is used instead of std::string. Unlike cl::vector, the size of a given

string is not defined statically but is allocated at creation. A developer can provide a replacement

implementation for std::string by defining the preprocessor macro:

__USE_DEV_STRING

The developer must provide the following typedef:

typedef stringType STRING_CLASS

where stringType is the user provided alternative for std::string, with an implementation that matches the

interface for std::string.

82

6. Index

This index lists each class, constructor, and method defined by the C++ wrapper API. Methods are listed under

their fully qualified names; e.g., the many getInfo methods are listed under cl::Context::getInfo,

cl::Device::getinfo, etc., not under getInfo.

__CL_ENABLE_EXCEPTIONS, 75

__CL_USER_OVERRIDE_ERROR_STRINGS, 75

__MAX_DEFAULT_VECTOR_SIZE, 78

__NO_STD_STRING, 79

__NO_STD_VECTOR, 78

__USE_DEV_STRING, 79

__USE_DEV_VECTOR, 78

Binaries, 26

cl, 3

cl::Buffer, 12

cl::Buffer::Buffer, 12, 13

cl::Buffer::createSubBuffer, 13

cl::BufferGL, 14

cl::BufferGL::BufferGL, 15

cl::BufferGL::getObjectInfo, 15

cl::BufferRenderGL, 15

cl::BufferRenderGL::BufferRenderGL, 15

cl::BufferRenderGL::getObjectInfo, 16

cl::CommandQueue, 46

cl::CommandQueue::CommandQueue, 46

cl::CommandQueue::enqueueAcquireGLObjects, 73

cl::CommandQueue::enqueueBarrier, 74

cl::CommandQueue::enqueueBarrierWithWaitList, 66

cl::CommandQueue::enqueueCopyBuffer, 52

cl::CommandQueue::enqueueCopyBufferRect, 53

cl::CommandQueue::enqueueCopyBufferToImage, 60

cl::CommandQueue::enqueueCopyImage, 57

cl::CommandQueue::enqueueCopyImageToBuffer, 59

cl::CommandQueue::enqueueFillImage, 58

cl::CommandQueue::enqueueMapBuffer, 62

cl::CommandQueue::enqueueMapImage, 63

cl::CommandQueue::enqueueMarker, 72

cl::CommandQueue::enqueueMarkerWithWaitList, 66

cl::CommandQueue::enqueueNativeKernel, 71

cl::CommandQueue::enqueueReadBuffer, 48

cl::CommandQueue::enqueueReadBufferRect, 49

cl::CommandQueue::enqueueReadImage, 55

cl::CommandQueue::enqueueReleaseGLObjects(, 73

cl::CommandQueue::enqueueTask, 70

cl::CommandQueue::enqueueUnmapMemObject, 65

cl::CommandQueue::enqueueWaitForEvents, 72

cl::CommandQueue::enqueueWriteBuffer, 48

cl::CommandQueue::enqueueWriteBufferRect, 50

cl::CommandQueue::enqueueWriteImage, 55

cl::CommandQueue::finish, 74

cl::CommandQueue::flush, 74

cl::CommandQueue::getInfo, 47, 48

cl::Context, 6

cl::Context::Context, 6, 7

cl::Context::getInfo, 8, 9

cl::Context::getSupportedImageFormats, 9

cl::Device, 5

cl::Device::createSubDevices, 6

cl::Device::Device, 5

cl::Device::getInfo, 5, 6

cl::EnqueueArgs::EnqueueArgs, 40

cl::Error, 75

cl::Error::what, 75

cl::Event, 41

cl::Event::getInfo, 41, 42

cl::Event::getProfilingInfo, 42, 43

cl::Event::setCallback, 43

cl::Event::wait, 43

cl::Event::waitForEvents, 44

cl::Image, 16

cl::Image::getImageInfo, 16, 17

cl::Image1D, 17

cl::Image1D::Image1D, 17

cl::Image1DArray, 18

cl::Image1DArray::Image1DArray, 18

cl::Image1DBuffer, 19

cl::Image1DBuffer::Image1DBuffer, 19

cl::Image2D, 20

cl::Image2D::Image2D, 20

cl::Image2DArray, 21

cl::Image2DArray::Image2DArray, 21

cl::Image3D, 22

cl::Image3D::Image3D, 22

cl::ImageGL, 23

cl::ImageGL::ImageGL, 24

cl::Kernel, 34

cl::Kernel::getArgInfo, 36

cl::Kernel::getInfo, 35

cl::Kernel::getWorkGroupInfo, 37

cl::Kernel::Kernel, 34

cl::Kernel::setArg, 37

83

cl::make_kernel::make_kernel, 38, 39

cl::Memory::getInfo, 10, 11

cl::Memory::setDestructorCallback, 11

cl::NDRange, 45

cl::NDRange::*(), 46

cl::NDRange::dimensions, 46

cl::NDRange::NDRange, 45, 46

cl::Platform, 3

cl::Platform::get, 3

cl::Platform::getDevices, 4

cl::Platform::getInfo, 3, 4

cl::Program, 26

cl::Program::build, 29, 30

cl::Program::compile, 30

cl::Program::createKernels, 34

cl::Program::getBuildInfo, 33

cl::Program::getInfo, 32, 33

cl::Program::linkProgram, 31

cl::Program::Program, 26, 27, 28

cl::Sampler, 24

cl::Sampler::getInfo, 25, 26

cl::Sampler::Sampler, 24

cl::string, 78

cl::UserEvent, 44

cl::UserEvent::setStatus, 45

cl::UserEvent::UserEvent, 44

, 45

cl::vector, 78

cl.h, 3

cl.hpp, 3

copy, 14

Sources, 26

Standard Template Library, 78

std::string, 78

std::vector, 78

STRING_CLASS, 79

VECTOR_CLASS, 78

